学年

教科

質問の種類

数学 高校生

このノートの(4)(ii)で、 xとyの最大公約数をgとすると、なぜ g=2^a×3^b×5^c×11^dになるんですか?

ET D Lake A P B BO [D 13 60 A A 15 C 8 B 接弦定理より∠ABD=∠ACBであり、 <Aは共通であるから、 の最大公約数をgとすると、 (i) x x Y or (i)よりa,b,c,dを Osas3, 08652.0 C≤2.0d₤17 満たす整数として d g=2x30x5x119と表せる。 acyの正の公約数の総和2604 よって、 △ABDCACBである。 AB:BD=AC:CB はgの正の公約数の総和に 楽しいので、 であるから、8:BD=15:13 15BD=104 2604=(1+2+…+2)(1+3+-+36) (I+ 5 +---+59) (I+ (1 +- +11) BD=104 である。Osa3.0/2.02. osd/1より、 (4)を正の整数とし、y=19800とする。 となの正の公約数の総和は 2604である。 (ⅰ) yを素因数分解 2119800 2 19900 214950 312475 31 15 +13 X12 45 15 62 31 31825 51275 5155 ( y=28.38.5:1 (ii)xとyの最大公約数 195372 yの公約数の総和 (2+2+2+2))(3+3+3)(5°+5+5) × (11°+11) 372 =(1+2+4+8)(1+3+9)(1+5+25)(1+) '9'0 13651=15×13×31×12 585 72'5'40 212604 211302 31651 71217 31 (+2+…+2=1.1+2,1+2+2+1+2+2+2 =1.3.7.15 (+3+430=1.13.1+3+3=1.4.13 1+5+…+5=1.1+5,1+5+5=1.6.31 1+1+パントけ11=1.12であり 2604=223.7.31 であるから、 ②の右が7の倍数であるにはa=2が 必要で、③のなが3の倍数であるにはC=2 が必要である。このとき③は 22×3×7×37×(1+3+39)x3x(HH-11 すなわち12=(1+3+…+3%)(1+11+..+ となる。「ほたは4または13」と「ほまたは12」の積 が12となるのは1×12のときのみなので、 b=0,d=1である。以上より、 g=23×3×5×11=1100

回答募集中 回答数: 0
数学 高校生

この問題についてです。dx/dθだけ求めてグラフを書けるのはなぜですか?dy/dθを求める必要はないのでしょうか?

16 重要 例 191 極方程式で表された曲線と面積 00000 極方程式 r=2(1+cos) (0ses)で表される曲線上の点と極Oを結んだ線 分が通過する領域の面積を求めよ。 指針 極方程式=f(6) を直交座標の方程式に変換して考える。 極座標 (r, 6) と直交座標 (x, y) の変換には、 関係式 ・基本 182. 数学 Cp.303 参考事項 x=rcos0=f(0) cos 0, y=rsin0=f(0)sino を用いて, x,yを0で表す。 →x,yが媒介変数日で表されるから,基本例題182と同様に置換積分法を用いて 計算する。 曲線上の点をPとし、点Pの直交座標を (x, y) とすると 解答 x=rcos0=2(1+cos 0 ) cos 0 y=rsin0=2(1+cos 0)sin0 6=0 のとき (x,y)=(4,0), 0= 6=1/2のとき (x,y)=(02) において y≧0 x,yを0で表し、 まずは 曲線の概形を調べる。 dx また =2(-sin)・cos0+2(1+cos6)・(-sin) de =-2sin0(1+2cos0 ) dx 0< 001のとき、 < 0 である y4 0= 注意 y は 0 = 1/35 におい から, 0に対してxは単調に減少 r=2(1+cos) 2 0=0 する。 10 よって, 求める図形の面積は, 右 て極大となるが,解答では, | 面積を求めるために必要な, 図形の概形がわかる程度に 調べればよい。 の図の赤く塗った部分である。 0 xと0の対応は右のようになるか ら, 求める面積をSとすると s=Sydx dx x 0 → 4 →0 ここで ded do -S2(1+cosd)sino・(-2sin0)(1+2cos0)de =4f (sin°0+3sin'@cos0+2sin°Ocos"0)d0 Sain³ Øde-1-cos 20 do sin20d0= 2 = [sin 201 = 置換積分法。 dx ひも も0の式で表 do されるから 0での定積 分にもち込む。 半角の公式。

未解決 回答数: 1
数学 高校生

サの部分がわからないので解説して頂きたいです。

000076 76 sin0, cos0 の2次式の最大・最小 a, b, cは正の定数とする。 0 2 の範囲で定義された2つの関数 S(0)=(1-√3a)sin' 0 +2asincos0+ (1+√3a)cos'0g(0)=bsinc0+b について (1) S(0) を a, sin20, cos20 を用いて表すと S(0) T lasin 20+ + ウ イ と変形できる。 よって,f(8) は のとき最大値 A = [エオ (2) g (0) の最小値が0であるとき, cの値の範囲は cサである。 このとき,さらにS(0) g(8) の最大値と最小値がそれぞれ一致するならば a+ キ 0= T ■ク のとき最小値ケ コαをとる。 b = セ + ソ タ a = ス チ である。 解答 (1) f(0) 変形すると Key 1 f(0)=(1-√3a) 1-cos20 2 +2a- sin20 2 +(1+√3a)1+ cos20 Key 2 2 = asin20+√3acos20+1= a(sin20+√3 cos20) +1 =2asin(20+ /25) +1 f(8) = (sin'0+cos'0) +a2sincos0 +3 a(cos20-sin³0) と変形し 2倍角の公式 2sincos0 = sin20 cos' 0 -sin^0= cos20 を代入してもよい。 π のとき ≤20+ 3 13 4 S より √3 2 α > 0 より ≤ sin(20+) 1 -√3a+1≦2asin (20+4 +1 ≦ 2a+10 よって, f(8) は 1 02 π π 20+ すなわち 0= 33 = 243 のとき最大値 24 +1 12 π 20+ (2)g(8)=0 のとき 60 より sinc0 = -1 0≧0 の範囲で sinc0 = -1 となる最小の8の値。 は すなわち 0 のとき 最小値1-3a 2 D bsinco = -b 3 c>0より, clo= となり 3 8₁ = 2 となるから 12c <10+(-1)=( よって,OSTの範囲で g (8) の最小値が0 となるとき c0 であるから, 3π 2c より c≥ 3 2 f(8) g (0) の最大値と最小値がそれぞれ一致するとき 2α+1=26 かつ 1-√34=0 これを解いて a= √3 3+2√3 b = 3 6 √3 3 三角関数 ( 最大値は (2)=6(sin+1) +1 = 26 攻略のカギ! Key 1 psin0 + gsincosd+rcos'0 は, sin 20, cos20 で表せ sind と costの2次式 f(0) = psin'0+gsindcosd+rcos' の最大・最小は, 2倍角の公式から得られ る下の3つの等式を利用して, f(0) を sin20 と cos20 の式で表してから、 合成して求める。 sin20 sincost= 2 sin² = 1-cos20 2 1+cos20 cos2 0 = 2 2 asin + bcos0 は,rsin (0+α)の形に合成せよ 35 (p.149)

回答募集中 回答数: 0
数学 高校生

数学cについてです (3)番です 見にくいですが、解説の下線部までは求められたのですが、直線AB の式がどこから来たのかがわかりません どのように求めるのでしょうか

図のように ry 平面上に点A(a, 0) B(0, 6) をとり, 線分ABを T1-t:tの比に内分する点をPとする. ただし, a≧0,6≧0,0<<1 であり線分ABの長さは常に1とする. (1) 点Pの座標およびy座標をα と tで表せ (2)点A0≦a≦1の範囲で動くとき,点Pはどのような曲線上を動くか. (3)(2)で求めた曲線上の点P における接線が,直線ABに一致するとき, との関係を求めよ.また,この関係を満たしながらt が 0<t<1の範囲 で動くとき, 接点はどのような曲線上を動くか. 2 b B3 O 2 P 1-t (3) a X (名古屋市立大薬一中 / 後半省略) アステロイドの性質 アステロイド (x3+y3=1; 媒介変数表示はx=cos 0, y=sin30) は, 長さ 1の線分がx軸,y軸上に両端点がある状態で動くときに通過する領域の境界にあらわれる. 例題を解 くと,(2)が楕円,(3)後半の曲線がアステロイドになり,両者は接する(接点は(3) 前半で求めたも の傍注の図参照). 演習問題も同じ図になるが, ABの通過領域を求める計算をやってみよう. 12 1-02= y 解答圜 (1)AB=1より6=√1-a2 であるから,P(ta, (1-t)/1-a²) YA (BB (2)=ta, y=(1-t) 1-α からαを消去すると, (0-1)+( P 2 y² 2 + -=1 0-2- 1-t t² (1-t)2 1-t 抹香 y2 (3)楕円 + +2 (1-t)2 =1上のP(ta, (1-t) √1-α2) における接線は, t 1-t -S) 1- ta (1-t)√1-a2 a y = 1 すなわち -x+ (1-t)2 t √1-a2 1-t -y=1である. 楕円の接線の公式. I 一方, 直線AB は y + =1だから, 両者が一致するとき, (+) a √1-a2 AO a 1 1-a2 -=- かつ : a=√t ta 1-t √1-a2 a=√f のとき,P(x,y)=(t√t, (1-t)√1-t) となるから, 3 3 x=tz,y=(1-t) 2 23 を消して,y=(1-x)2 2 2 ∴. x3+y=1 (+)+s ←第2式からは1-4²=1-t ■(2)と(3) を重ねて描くと YA 1 2 -SD-S 1-t 2 -x³+y³= 3=1 P(+², (1-+)²) A 4 演題 (解答は p.90) 0 t 1 IC

未解決 回答数: 0