学年

教科

質問の種類

数学 高校生

数I データの分析について 第3四分位数が3番目だとするのが分かりません

例題11 箱 右の図は、2つの漁港A. B のある年における各月の水 揚げ量 (kg) の箱ひげ図である。 次の①~④のうち、この 箱ひげ図と矛盾するものを1つ選べ。 ただし, 漁港 A, Bとも、同じ水揚げ量の月はなかったものとする。 ① 水揚げ量の中央値は, 漁港Bより漁港Aの方が小さい。 ② 水揚げ量の範囲は、 漁港Aより漁港Bの方が大きい。 漁港A 漁港B 100 200 300 ③漁港Aで3番目に水揚げ量が多かった月の水揚げ量は400kg 以上である。 ④ 漁港Bで200kg未満の水揚げ量の月は4か月あった。 考え方 最大値、最小値,四分位数を読み取り, 正誤を判断する 正誤を判断する問題では,正確な値まで読み取る必要のない問題もある。 選択肢 ①〜④に関する必要な情報を抜き出して, 正誤を判断する。 ポイント ① 正誤を判断 → (解答) 400 500(k [類 東北文化学 ① 漁港Aの中央値 (約280kg) は漁港Bの中央値 (約305kg) より小さいから、正 ② 漁港 A, B のおおよその範囲はそれぞれ 420-100=320 (kg), 500-150=35 よって, 漁港Aより漁港Bの方が範囲が大きいから,正しい。 ③漁港Aの第3四分位数は400kg であるから, 漁港Aで3番目に水揚げ量が多 月の水揚げ量は400kg以上であり, 正しい。 ④漁港Bの第1四分位数は200kgであり、 同じ水揚げ量の月はない。 よって, 200kg未満の水揚げ量の月は3か月であるから, 矛盾する。 したがって, 矛盾するものは 4 答

回答募集中 回答数: 0
数学 高校生

この問題教えて欲しいです! 有効数字が全然分からないです

1. 次の文中の( )に適当な言葉や数値, 記号を書き入れなさい。 国際的な単位の取り決めで定められた, 長さ 質量, 時間, 電流, 温度、物質量, 光度など7種の量を (①) といい、それぞれに対応して定められた単位を (2) という。 また、速さやエネルギー, 電圧など, (2) 組み合わせた単位を (3) という。 物理量は, 数値 × (4) で表す。測定値として意味のある数字を (5) という。 精度のよい測定ほど、 有効数字の桁数が (⑥)。 科学で扱う数値を, 4×10 の形で表したものを (7) という。ただし (8) A< (9) である。 例えば, 測定値 185mm は, 有効数字 (⑩) 桁で, 科学表記で は (①)と表す。 測定値 185.0mm は, 有効数字 (12) 桁で, 科学表記では (13) と表す。 測定値 0.0185m は 有効数字は (14) 桁 (15) と表す。 測定値どうしの掛け算・割り算では、 有効数字の桁数の最も ( 16 ) ものに、計算結果の桁数をそろえる。 例えば, 4.23cm (3桁)×6.3cm (2桁)=26.649 の計算の場合、 (17) 桁 にそろえて (18) cm 2。 また, 測定値どうしの足し算 引き算では, 有効数字の1番下の位が最も大きいも のに計算結果の位をそろえる。 例えば4.23m (小数第2位) +1.567m (小数第3位) 5.797mの計算の場 合, 小数第 (19) 位にそろえるので (20) となる。 ① 基本量 ② 基本単位 ③組立単位 11 8. (13) ⑤ 10 10 17 (18) 19 20

回答募集中 回答数: 0
数学 高校生

sinだけ2個三角形を書くのとcos,tanは左に書いて残りの角度が答えになる理由を教えてください

三角 050≤180 (1) sino= CHART 解答 GUIDE たすを求めよ。 √3 2 (2) COS 0=- √2 11125 (3) tan 6-- /3 三角方程式 等式を表す図を、定義通りにかく 三角比の定義 sino=y 半径の半円をかく。 r cos 6= ② 半円周上に,次のような点Pをとる。 tang= (1) 7=2 (2) *=√2 (3) 7-2 (1) y 座標が√3 (2) 座標が-1(3) x座標が√3 ③ 線分 OP x軸の正の部分のなす角を求める。 半径2の半円上で,y座標が√3で ある点は,P(1,3)とQ(-1,√3) の2つある。 求めるは,図の∠AOP と ∠AOQ Q 2 2120° 三角定規の辺の比を利用し よう。 32 (1) Q And -2-10 /1 2x 60° 160° √3 22 6060° であるから,この大きさを求めて 0=60° 120° (2) 半径√2の半円上で, x座標が -1 101 である点は,P(-1, 1) である。 √2 y2 (2) P 求める0 は,図の ∠AOP であるから, この大きさを求めて 1 135° √2 1 A 三平方の 45 ・1 0 √2 x 45° 0=135° を三 (3) 座標が-3 y座標が1である (3) 200 点Pをとると, 求める 0 は,図の ∠AOP である。 -2. 2 2 150° この大きさを求めて 0810 A. 30 ° 0=150° √√30 2 % 0 Ania 30° x x=-√3. y=1 とする。 ご注意 (3) tan0=20180° では、常に y≧0 であるから, tan0=- 1 とし 3 Ans CV110の 100°と次の等式を満たすを求めよ。 ton A==√√3

回答募集中 回答数: 0