学年

教科

質問の種類

数学 高校生

(2)で少なくともa>0になるのはなぜですか。

第4章 基礎問 86 第4章 極限 49 関数の極限 (II) 次の式をみたすもの値を求めよ。 (1)/ lim 1-2 av '+2x+8+ 3 x-2 = 4 (2)/lim{vr2-2x+4-(ax+b)}=0 18 (大) mil =lim (1-a)-2(1+ab)x+4-b² →∞ 精講 このタイプもIIB ベク82 で学習済みですが, ポイントになる考え 方は,不定形は 「極限値が存在しない」のではなく, 「存在する可能 =lim- 8 87 (2) lim-2x+4+∞だから、 与式が成りたつためには、少なく P とも,a>0.このとき lim (-2x+4-(ax+b)) →∞ =lim 811 {v-2x+4-(a+b){-2x+4+(x+b)) x²-2x+4+(x+b) -2x+4+ax+b 4-62 (1-a)x-2(1+ab)+· I 2. 4 ・① 1- + b +a+- I (x→ +∞ より 0 と考えてよい 性は残っている」 ということです. (1)では, →2のとき分母→0. このとき, 「分子→0以外の定数」 ならば,極 は∞となるので、2にはならない。よって、極限値が4になるとす れば,「分子→0」 となる以外に可能性は残されていない この極限値が0になるので、1-60,a>0より1 ①式=-(1+b)=0 このとき :.b=-1 逆に,=1,b=-1 のとき, 3 (与式の左辺) = lim = 0 1-0 √x²-2x+4+x−1 ただし、この考え方は必要条件になるので,最後に吟味(=確かめ) を忘れな いようにしなければなりません。 となり確かに適する. 吟味 A ポイント 不定形は, 極限値が存在しないと決まっているのでは

解決済み 回答数: 1
数学 高校生

(2)は判別式と最初に書いてあるa>0の2つの条件のみで解くのはだめですか?g(-1)と軸>-1は必要ですか?

40 逆関数 (s)=var-2-1 (a>02) とするとき、次の問いに答えよ (1) y=f(x) の逆関数y=f(x) を求めよ.(s) ハー (2) 曲線 y=f(x) と曲線 C2:y=f-l(xc) が異なる2点で交わる ようなαの値の範囲を求めよ. (3) C,C2の交点のx座標の差が2であるとき,αの値を求めよ。 (0>x) (x)\S 〈逆関数の求め方〉 精講 y=f(x) の逆関数を求めるには,この式を x=(yの式)と変形し, xとyを入れかえればよい 〈逆関数のもつ性質> I. もとの関数と逆関数で, 定義域と値域が入れかわる Ⅱ. もとの関数と逆関数のグラフは、直線 y=x に関して対称になる 逆関数に関する知識としてはこの3つで十分ですが,実際に問題を解くとき 〈逆関数のもつ性質〉を上手に活用することが必要です. この基礎問では,Iが ポイントになります。 解答 (1)y=√ax-2-1 とおくと, √ax-2=y+1 よって, y+10 より, 値域は y≧-1 ここで,両辺を2乗して ■大切!! ax-2=(y+1)2 . a x = 1/1 (4+1)² + 2/2 (y = −1) a よって、f(x)=1/2(x+1)+12/2(x-1) 【定義域と値域は入れ かわる a a 注 「定義域を求めよ」とはかいていないので,「x≧-1」は不要と思う 人もいるかもしれませんが,この値に対してyを決める規則が関数で ですから、xの範囲, すなわち, 定義域が 「すべての実数」 でない限り は、そこまで含めて 「関数を求める」 と考えなければなりません . (2) y=f(x) y=f'(x)のグラフは,凹凸が異なり,かつ, 直線

解決済み 回答数: 1
数学 高校生

2枚目のセソタチの問題です なぜ3枚目の赤線のような式になるのか分かりません 教えて頂きたいです🙇‍♀️

[実戦] 5 絶対値を含む連立不等式 タイムリミット20分 先生と太郎さんと花子さんは,数学の授業で,以下の連立不等式について考察している。 [x-2a≧-3 ||x+a-2|<6 ① ・② の 3人の会話を読んで (1)~(3)の問いに答えよ。 ただし, αは定数とする。 先生:まずは,不等式 ② に注目してみましょう。 a=0 のとき, 不等式 ② の解を求め てみてください。 太郎: アイ <x<ウとなります。 先生: 正解です。 Q (1) アイ, ウ に当てはまる数を答えよ。 先生:次に,x=1 が不等式① を満たさないようなαの値の範囲を求めてみましょう。 太郎: x=1 が不等式① を満たさないから, 不等式① に x=1 を代入してもその不等 式は成り立たないよね。 つまり,x=1 が不等式①を満たさないための必要十分 条件は 1-2α エ |-3 だね。 花子:もう一つ考え方があるんじゃないかな。 不等式① を xについて解くと, x≧2a-3 となるか ら,これを数直線で表すと右の図のようになるよ。 2a-3 この図から x=1 が不等式① を満たさないとき, オ 2α-3となることからもαの値の範囲が求められるね。 太郎 : 確かにどちらの不等式を解いても, a カキ となるよ。 先生:そうですね。 2通りの考え方ができましたね。 J (2) I オ カ に当てはまるものを、次の①~⑤のうちから一つずつ選 べ。 ただし, 同じものを繰り返し選んでもよい。 ⑩ > ① < ②≧ ④C また, キ に当てはまる数を答えよ。

未解決 回答数: 1