学年

教科

質問の種類

数学 高校生

Aの座標が3a,3bなのはどうしてですか?

116 基本 例題 67 座標を利用した証明 (1) △ABCの重心をGとするとき, AB2+BC2+CA2=3(GA2+GB +GC)が 成り立つことを証明せよ。 CHART & THINKING y 基本 例題 68 p.112 基本事項 31 51 座標を利用した証明 座標を利用すると、 図形の性質が簡単に証明できる 場合がある。 そのとき、 座標軸をどこにとるか, 与 えられた図形を座標を用いてどう表すかがポイン トとなる。 そこで, あとの計算がスムーズになるよ うに、座標軸を定める ② 変数を少なく A(x1, y₁) B(x2,y2) (x+y+xy+x+a) C(x3,y2) 0 ↓辺BC をx軸上に。 y ★3点A(5,1 Dの座標を求 CHART & 「平行四辺形】 頂点の順序が いことに注意。 形のパターン Dの座標を求 2本の A(x1,y) ( 1 0 を多く くるように0 が多くなるようにとる。 1 問題に出てくる点がなるべく多く座標軸上に O B(x2, 0) C(x3, 0) を利用すると もっとよい方法は? 2つの頂点を原点に関して対称にとる 解答 残りの頂点 — 変数の文字を少なくする。 これらをもとに, 点 A, B, C の座標を文字でどう表すかを考えよう。 直線 BC をx軸に,辺BCの垂直 理由? ←10を多く 二等分線をy軸にとると, 線分三二a,36) BCの中点は原点0になる。 A(3a, 36), B(-c, 0), C(c, 0) ← ② 変数を少なく G(33 平行四辺形 [1] [1] 平 線分 D したが [2]平 線分 G(a,b) とすると, Gは重心であるから, 01 A(a, b) とすると, b B C となり計算が G(a, b) と表すことができる。 このとき AB2+BC2+ CA2 ={(-c-3a)+(-3b)2}+{c-(-c)}+{(3a-c)2+(36)2} =3(6a2+662+2c2) ・① (-c, 0) O (c,0) x 少し煩雑。 した 両辺を別々に計算して 比較する。 [3] = 線分 GA2+GB2+GC2 ={(3a-a)2+(3b-b)2}+{(-c-a)+(-b)2} +{(c-a)+(-b)2} =6α²+6b2+2c2 ①② から AB2+BC2+CA=3(GA2+GB2+GC2) 注意 更に都合がよくなる ようにと, A(0,36)など とおいてはいけない。この 場合, Aはy軸 (辺BCO 垂直二等分線) 上の点に 定されてしまう。 以上 PRACTICE 67° (1) ∠ABCの辺BCの中点をMとするとき, AB'+AC'=2(AM'+BM)(中線定理) が成り立つことを証明せよ。 (2)△ABCにおいて, 辺BC を 3:2 に内分する点をDとする。このとき, 3(2AB2+3AC2)=5(3AD2+2BD) が成り立つことを証明せよ。 P

解決済み 回答数: 1
数学 高校生

数2の高次方程式の問題です。 四角で囲んであるところの意味がわかりません。

基本 例題 63 2重解をもつ条件 00000 3次方程式 x+(a-1)x2+(4-α)x-4=0が2重解をもつように、 実数の 定数αの値を定めよ。 CHART & SOLUTION 3次方程式の問題 因数分解して (1次式)×(2次式)へもち込む x=1 を代入すると成り立つから, 与えられた方程式は (x-1)g(x)=0g(x)は2次式]の形となる。 ここで,「2重解をもつ」 のは次の2通りで、 場合分けが必要。 [1] 2次方程式g(x)=0が1でない重解をもつ。 [2] x=1が2重解→ g(x) = 0 の解の1つが1で,他の解は1でない。 解答 f(x)=x+(a-1)x2+(4-a)x-4 とすると 基本 61 f(1)=1+(a-1)・12+(4-α) ・1−4=0 よって, f(x) は x-1 を因数にもつから f(x)=(x-1)(x2+ax+4) 1 a-1 4-a -4 1 a 4 1 a 4 0 ■ゆえに, 方程式は (x-1)(x2+ax+4) = 0 したがって x1 = 0 または x2+ax+4= 0 この3次方程式が2重解をもつ条件は,次の[1] または [2] が成り立つことである。 [1] x2+ax+4=0 が1でない重解をもつ。 判別式をDとすると D=0 かつ 12+α・1+4=α+5=0 D=α2-16=(a+4)(α-4) 土でも重解 D=0 とするとα=±4 これはα+5≠0 を満たす。 [2] x2+ax+4=0 の1つの解が1, 他の解が1でない。9 x=1 が解であるから よって a+5=0 「このとき x2-5x+4=0 12+α・1+4=0 ゆえに a=-5 よって (x-1)(x-4)=0 これを解いて x=1,4 したがって他の解が1でないから適する。 別解 次数が最低の について整理する方 因数分解してもよい。 x-x2+4x-4+α(3 (1)(x2+4)+ax (x-1)(x2+ax+4 inf. 次のように考 よい。 [2] x2+ax+4=0 1β(1) の と係数の関係か 1+β=-a, β=4 は適する [1], [2] から, 求める定数 αの値は このとき a= a=±4,-5

解決済み 回答数: 2
数学 高校生

(2)の0<1/x<1の式に 問題の式を変形させずに入れてはさみうちの原理を使うことは可能ですか?またできないのであればなぜできないのか教えて欲しいです

=10gsx1 =10g3√x 3x-1 CHART 分母分子に 3x-1 を掛 √xで割る。 (1) 不等式 [3]≦3x < [3x]+1が成り立つ。 解答 x0 のとき,各辺をxで割ると [3x] 1 ここで,3< + から x x (s) [3x] 関西大 基本例題 52 関数の極限 (4) *** 2+3x+x) 基本事項 4. 基本 50 (1) lim x 次の極限値を求めよ。 ただし, [x] は x を超えない最大の整数を表す。 ・はさみうちの原理 89 00000 [zais (2) lim(3*+5*)/ 介 p.82 基本事項 基本 21 利用して,まず 針 。 分母分子を 形 することに 込むのもよい。 818 極限が直接求めにくい場合は、 はさみうちの原理 (p.825 ①の2) の利用を考える。 (1) n≦x<n+1 (n は整数) のとき [x]=n すなわち [x]≦x<[x]+1 よって [3x]3x < [3x]+1 この式を利用してf(x)≦ [3x] -≦g(x) x (ただしlimf(x) = limg(x)) となる f(x), g(x) を作り出す。 なお、記号 []はガ →00 ウス記号である。 (2) 底が最大の項でくくり出すと352) 5(/)+112 (2)の極限と {(g)+1} 力な にや 実で学 2 2章 ⑤関数の極限 はさみうちの原理を利用する。x→∞であるから,x>1 すなわち <1と考 えてよい。 の極限を同時に考えていくのは複雑である。そこで, 0 < x 求めにくい極限 不等式利用ではさみうち 203 [3x] [3x] ≤3< 1 + x x x 3-1 [3x] x XC よって ≤3 x x はさみうちの原理 巻 f(x)≦h(x)≦g(x)で limf(x)=limg(x)=α →∞ x→∞ O lim (3-1) =3であるから (2)(3)1 x→∞であるから,x10 < 1/2 <1と考えてよい。 x このとき(23)+1}{(1) +12 <{(1/3)+1} すなわち 1<{(3³)*+1}* <(3)*+1 lim(2/2)+1} =1であるから lim [3x] lim- mil ならばlimh(x)=α =3 x→∞ x→∞ x Anie 3x 底が最大の項でく くり出す (*) A>1のとき,a<b ならば A°<A° 3 +1>1であるか ら, (*) が成り立つ。 -ら、 する。 よってtim(3*+59) - im5(2)' +1-3-1-5 x ・ら から

解決済み 回答数: 1
数学 高校生

(3)で、なぜk+3は5を含まないのですか?

基本 例題 46 不等式で表される集合 実数全体を全体集合とし,その部分集合 A, B, C を A={x|-3≦x≦5}, B={x||x|<4}, C={x|k-7≦x<k+3} (kは定数)とする。古代 (1)次の集合を求めよ。 .109 2015 (ア) B (イ) AUB (ウ) ANB (2) ACCとなるkの値の範囲を求めよ。 /p.80, p.81 基本事項 1, 3, 5 指針集合の要素が離散的な値 (とびとびの値) でなく連続的な値であるときも,その集合を 視覚化するとよい。 この問題のように, 全体集合が実数全体の場合, ベン図ではなく、 集合を数直線で表すと考えやすい。 解答 その際,端点を含むときは,含まないときは を用いて, とくの違いを明確にしておく (p.63 参照)。 例えば, P={x|0≦x<1} は右の図のように表す。 CHART 集合の問題 図を作る (1)(ア)|x|<4から -4<x<4 よって, B={x|-4<x<4} であるから 0 1 x ー <x<c (cは正の定数) の解は -4 4 x -c<x<c B={x|x≦-4, 4≦x} (B={x||x|≧4} でもよい) (イ) A,B を数直線上に表すと, 右の図のようになる。 - よって AUB={x|x≦-4,-3≦x} (ウ) 右の図から BB- -A- -4-3 45 x <x<-4, 4<xは誤り。 端点を含まない範囲の集 合の補集合は,端点を含 む範囲の集合である。 ← ○ 補集合は ● A∩B={x|4≦x≦5} (2) ACC が成り立つとき, A, Cを数直線上に表すと, 右の図のようになる。 ゆえに, 全にk-7-35k+3x ACCとなるための条件は,804 ② k-7-3 ①,k+3>5 が同時に成り立つことである。 ①から k≦4 ②から k>2 共通範囲を求めて 2<k≦4 A (2) ①には等号がつくが ②には等号がつかない ことに注意。 k-7=-3 のときは,-3はAの要 素でもCの要素でもあ 。 +3=5のときは、 要素であるが Cの要素ではない。

解決済み 回答数: 1
数学 高校生

赤マーカーの部分がなぜこうなるのかわかりません。※ (①〜④)の部分 教えて下さい🙇‍♂️

7 極限が存在するように定数を定める 2x2+ax+a+1 (ア) lim- =bと書けるとき, α = b= 」である. x-2 x²+x-6 (中部) (イ) αを実数とする. a= ] のとき, lim (4x'+x+ax)は有限な値 」をとる. →+∞ (関西大 社会安全, 理工系) 分数式の極限が存在するとき 分母0のとき, 分子 分母 は分子→0でなければ発散する。つまり。 分母 (分母→0で →有限のとき,分子=分子 分数式の極限が存在するとき, 分母→0なら分子→0となっていなければならない. 分子 -×分母→有限×0=0, と説明することもできる 分母 精密に調べる前に (イ)では,“分子の有理化”をするが,変形する前にαの符号を調べておこう。 lim√42+xなので, a≧0のときは与式は∞に発散してしまう。よって&<0でなければならな X100 このときはもは 00-00 不定形では? いことがまず分かる.また,x→∞を考えるときはとしてよい.x2=|x|=xなどとすることが できる. ■解答 SMART (ア) →2のとき, 分母=x²+x-6→4+2-6=0であるから, 分数式の極限値 bのとき,分子→0でなければならない. 覚えない よって, 2・22+α・2+α+1=0であるから, a=-3 2x2+ax+a+1 2x²-3x-2 このとき, (x-2) (2x+1) x2+x-6 x2+x-6 (x-2)(x+3) 2x+1 5 (2 =1 x+3 x-2 5 =1 ← <3a+9=0 する ←分母分子とも, x=2のとき0 なので,ともに2を因数にも (因数定理) r-2で約分され て不定形が解消する. (イ) lim√42+x=+∞であるからa < 0 である. →+∞ (42+x)-(ax)2 √2+x+ax=- √√4x²+x-a ax (4-a2)x²+x (4-a²)x+1 ( 参照. √√4x²+x+ax の分子を有理化 = == √√4x²+x-ax 4+ a ・① 分母が0以外の値に収束するよ IC うに、分母分子をxで割った。 ④ のとき,①の分母→2-α(0) となるから, ①が有限な値に収束する とき, 4-α2=0 1 a <0によりα=-2であり, lim ① = x178 √A 2+2 -a 4 4-α>0のとき ①→∞ 4-2<0 のとき ①→-8

解決済み 回答数: 1
数学 高校生

数Ⅱ 軌跡の問題です 解説3行目からわかりません!! 解説お願いします!!🙇

162 基本 例題 99 媒介変数と軌跡 00000 は定数とする。 放物線y=x'+2(a-2)x-4a+5について αがすべての 実数値をとって変化するとき、頂点の軌跡を求めよ。 基本 98, 重要 102 CHART & SOLUTION 基本例 直線 x x-2y- CHAR 線対称 xyが変化する文字αを用いて表される点の軌跡 つなぎの文字を消去して、xだけの関係式を導く 頂点の座標を (x, y) とすると x=(αの式),y=(αの式) の形に表される。 ここから, つなぎの文字αを消去して,xとyの関係式を導く。 解答 放物線の方程式を変形すると 点Qが Pの軌 y={x+(a-2)}-α²+1 y={x+(a-2)}^ -(a-2)-4a+5 ---- x=-α+2 放物線の頂点をP(x, y) とする と a=-1 ① 0 /1 2 3 X 放物線y=a(x-p)+q の頂点の座標は (p.g) y=-α²+1 ...... ② 解答 直線 上を 直線 に関 ①から α=-x+2 x これを② に代入して y=(x+2)2+1 -3a=2 a=-2 つなぎの文字αを消去。 したがって、求める軌跡は 放物線 y=(x-2)2+1 INFORMATION 媒介変数表示 図形の方程式がx=f(t), y=g(t) のように,もう1 別の変数 (媒介変数) を使って表されたとき,これ を媒介変数表示という。 y (-1,4) t=-2 (3,4) t=2 1つの実数の値に対して, x=f(t), y=g(t) によ り (x, y) の値が1つに決まり,tが実数の値をとっ て変化すると, 点(x,y) は座標平面上を動き、 図形を 描く。 (0, 1) t=-1 (2,1) t=1 0 (1, 0) 例 x=t+1, y=t2 は放物線y=(x-1) 2 を表す。 実際に点をとると, 右の図のようになる。 1=0 PRACTICE 99 3 αは定数とする。 放物線 y=x+ax+3-α について, αがすべての実数値をとって 変化するとき,頂点の軌跡を求めよ。

解決済み 回答数: 1
数学 高校生

赤丸のところで100Xになるのは分かるのですが下の10Xはなぜxではなく10xになるのか教えてほしいです🙏🏻

(1) 次の循環小数を分数で表せ。 基本 例題 20 循環小数の分数表示など (ア) 2.42 (イ) 0.342 (ウ) 3.26 p.41 基本事項 1章 3 9 37 (2) を小数で表したとき, 小数第50位の数字を求めよ。 CHART & SOLUTION 循環小数の分数表示 = (循環小数) とおき, 循環部分を消す (1)例えば,循環小数x = 0.1 は, 小数部分が1桁ずつ繰り返して いるから, 10x と xの差を考えて、 右のように計算すると 9x=1 よってx=1/23 これと同様に考える。 10x=1.11" - x=0.11. 9x=1 (ウ)x=3.26 とおいて10x=32.6 から 10x-x を計算してもよいが, 分子に小数が出て きてしまう。 100x-10x を計算する方がスムーズ。 (2) 循環小数に表し、 何個の数字が繰り返し現れるかを調べる。 k個の数が繰り返し現れる なら, 50をんで割った余りに注目。 4440 実数 (1) (ア) x=2.42 とおくと, 100x=242.4242・・・・・ 右の計算から x= 240 80 99 33 (イ) x=0.342 とおくと, 右の計算から - x= 2.4242・・・・・ 99x=240 -) 342 38 x=- ←循環部分が2桁→ 両辺を100(102) 倍。 1000x=342.342342・・・・・・ 0.342342・・・・・・ x= 999x=342 100x=326.66•••••• ◆辺々を引くと, 循環部分 が消える。 ←循環部分が3桁→ 両辺を1000 (10) 倍。 + 999 111 (ウ) x=3.26 とおくと,右の 294_49 - 10x= 32.66・・・・・・ 計算から x= 15 90 90x=294 10x-xを計算すると, 9x = 29.4 から x=- 29.4_294 49 9 90 15 9 (2) =0.243243=0.243 37 よって, 小数点以下で243の3個の数字が循環する。 50=3・16+2 243を□とすると .....0 |24 16個 2個 であるから, 小数第50位は243の2番目の数字で4である。 PRACTICE 20 2 (1) 次の循環小数を分数で表せ。 (ア) 0.7 (イ) 3.72 (ウ) 1.216 10 (2) を小数で表したとき,小数第 100 位の数字を求めよ。 7

解決済み 回答数: 1
数学 高校生

場合の数の質問です 赤線で引いた所が分かりません どうして×3なんですか

346 基本 (全体) (・・・でない)の考えの利用 00000 大 中 小3個のさいころを投げるとき, 目の積が4の倍数になる場合は何通り あるか。 [東京女子大] 目の積が4の倍数」を考える正攻法でいくと, 意外と面倒。そこで, として考えると早い。ここで、目の積が4の倍数にならないのは、次の場合である。 目の積が4の倍数)=(全体)-(目の積が4の倍数でない) [1] 目の積が奇数 3つの目がすべて奇数 2つは奇数 [2] 目の積が偶数で 4の倍数でない→偶数の目は2または1つだけで、他の CHART 場合の数 目の出る場合の数の総数は 早道も考える (Aである) = (全体) (Aでない)の活用 6×6×6=216 (通り) 解答 目の積が4の倍数にならない場合には,次の場合がある。 [1] 目の積が奇数の場合 3つの目がすべて奇数のときで 3×3×3=27 (通り) [2] 目の積が偶数で, 4の倍数でない場合 積の法則 (6" と書いてい よい。) 数どうしの種は 1つでも偶数があれば 積は偶数になる。 3つのうち、2つの目が奇数で、残りの1つは2または64が入るとダメ。 の目であるから (32×2)×3=54 (通り) [1] [2] から 目の積が4の倍数にならない場合の数は 27+54=81 (通り) よって、目の積が4の倍数になる場合の数は 216-81=135 (通り) 目の積が偶数で4の倍数でない場合の考え方 和の法則 (全体)・・・でない) 基本 500円 で、 いも 指針 解答 上の解答の [2] は,次のようにして考えている。 検討 大中小のさいころの出た目を (大,中,小) と表すと, 3つの目の積が偶数で、4の倍数 にならない目の出方は,以下のような場合である。 (大,中,小) = (奇数, 奇数, 2 または 6 ) 3×3×2 通り よって =(奇数 2 または 6 奇数) 3×2×3 通り =(2または6, 奇数,奇数) 2×3×3 通り (32×2)×3通り 参考目の積が4の倍数になる場合の数を直接求めると,次のようになる。 (i) 3つの目がすべて偶数 33通り 2つの目が偶数で, 残り1つの目が奇数 (32×3)×3通り 合わせて 27+81 +27 (1つの目が4で、 残り2つの目が奇数 → → (1×32) ×3通り」 =135(通り) 練習 大,中,小3個のさいころを投げるとき,次の場合は何通りあるか。 ③9 (1) 目の積が3の倍数になる場合 (2)目の積が6の倍数になる場合 p.357 EX81 検

未解決 回答数: 1
数学 高校生

数Ⅱ 軌跡を求める問題です。 写真の解説一行目で、基本例題98ではいつも使っている文字としてP(x,y)としたのですが、PR98でPの座標をP(x,y)としたら間違っていて、x,y以外の文字にする、と書かれていました。 2つの問題の違い、なぜPR98の問題でP(x,y)と置... 続きを読む

基本 例題 98 曲線上の動点に連動する点の軌跡 DACTICE (木) 98 thehet 1 00000 点Qが円x+y=9 上を動くとき, 点A(1,2) とQを結ぶ線分AQ を 2:1 に内分する点Pの軌跡を求めよ。 CHART & SOLUTION 連動して動く点の軌跡 p.158 基本事項 1 つなぎの文字を消去して、 x yだけの関係式を導く ...... 動点Qの座標を (s, t), それにともなって動く点Pの座標を (x, y) とする。 Qの条件を s, を用いた式で表し, P, Qの関係から, s, tをそれぞれx, yで表す。 これをQの条件式に 代入して,s, tを消去する。 解答 Q(s, t), P(x,y) とする。 x+y=9上の点であるから Pは線分AQ を 2:1 に内分する点であるから s2+t2=9 13 ① (s, t) 2- A 1・2+2t 2+2t Q (1,2) 3 -, y= 2+1 3 -3 0 1・1+2s 1+2s x= 2+1 よって s=3x21.t=3v22 2 ●これを①に代入すると (321)+(3x-2)=9 ゆえに (12/21)+(1/2)=9 よって(x-1)+(y-22-4 =4 ...... ② したがって, 点Pは円 ②上にある。 逆に円 ②上の任意の点は,条件を満たす。 以上から、 求める軌跡は 中心 2) 3'3' 半径20円 P(x,y) つなぎの文字 s, tを消 去。 これによりPの条 件(x, yの方程式)が得 られる。 inf. 上の図から,点Qが 円 x2+y^2=9上のどの位 置にあっても線分AQ は 存在する。 よって, 解答で 求めた軌跡に除外点は存在 しない POINT 曲線 f(x, y) = 0 上の動点 (s,t) に連動する点(x, y) の軌跡 ① 点 (s, t) は曲線 f(x, y) = 0 上の点であるから f(s, t)=0 ② s, tをそれぞれx, y で表す。 ③ f(s, t)=0に②を代入して, s, tを消去する。 RACTICE 982 放物線y=x2 ① とA(1,2), B(-1, -2), C(4, -1) がある。 点Pが放物線 ①上を動くとき、次の点Q, R の軌跡を求めよ。 (1) 線分APを2:1 に内分する点Q (2) △PBCの重心R

解決済み 回答数: 1