学年

教科

質問の種類

数学 高校生

この手書きだと答えが違うのですが、なぜダメですか?

補充 例題 140 223 三角方程式の解法 (和積の公式の利用) ①①①①① 2πにおいて, 方程式 sin30- sin20+sin0 = 0 を満たす 0を求めよ。 CHART & SOLUTION [類 慶応大] 補充 139 2倍角, 3 倍角の公式を利用して解くのは大変 (別解 参照)。 3項のうち2項を組み合わせ て,和→積の公式 sin A+sin B=2sin- A+B A-B COS により積の形に変形。 2 2 残りの項との共通因数が見つかれば, 方程式は = 0 の形となる。 そのためには sin30 と sin0 を組み合わせるとよい。 解答 の 1 ヨチ 学 関 0与式から (sin30+sin0)-sin20=0 ここで sin30+sin0=2sin 30+0 30-0 COS 2 2 =2sin 20 cose よって 2sin 20cos-sin20=0 3 すなわち sin 20(2cos0-1)=0 あせ ← (30+0)÷2=20 である から sin 30, sin0 を組 み合わせる。 4章 積=0 の形に。 したがって sin200 または cos0= 0≦0 <2πであるから 0≤20<4л この範囲で sin200 を解くと 20=0, π, 2, 3π coso= の参考図 2 y1 1 π 3 よって 0=0,, x, x π, π 002 の範囲で cos0= π 5 |-1| を解くと 0= π 3 3 したがって,解は 3'2 0=0, 1, 7, 7. x. 3* 3 5 π, π 別解 sin 30 - sin 20+sin0 =3sin0-4sin0-2sinOcos0+sin0 =4sin 0-4 sin³0-2 sin cos 0 =2sin0(2-2sin'-cos0 ) =2sin(2cos2d-cose)=2sin0cos0 (2cos0-1) よって, 方程式は 2sincos (2cos0-1)=0 ゆえに sin00 または cos0=0 または cosθ=- 2 したがって、002 から求める解は π 0=0, 1, 1, x, x, 3 5 3' 2 π, 2T, 3π PRACTICE 140 53 T 13 ON |1 1x T 2 17 加法定理 sin30=3sin0-4sin 0, sin20=2sin Acoso ← sin20=1-cos2 COSA=Q を満たす 0 を求めよ。

解決済み 回答数: 1
数学 高校生

(1)の数列bnの式で、なぜ(n-1)をかけるかわかりません。 (1)、(2)どちらも数列bnの式の求め方がわかりません(bn=an+1-anまではわかる)教えて欲しいです🙇🏻‍♀️

380 基本 例題 19 階差数列と一般項 次の数列{a} の一般項 αn を求めよ。 (1)8, 15, 24, 35, 48, (2) 5, 7, 11, 19, 35, CHART & SOLUTION {a} の一般項 (bn=an+1-an とする) わからなければ,階差数列 {bm} を調べる p.375 基本事項.Gha n-1 n≧2のときabk k=1 ← 初項 (n=1の場合) は特別扱い。 解答で公式を使うときは n≧2 を忘れないように。 また, n=1 ように! (1) 階差数列は 7, 9, 11, 13, 公差2の等差数列 (2)階差数列は 2, 4, 8, 16, 公比2の等比数列 解答 その場合の確認を忘れ 数列 {an} の階差数列を {bm} とする。 (1) 数列{bm} は, 7, 9, 11, 13, 公差2の等差数列である。 ・・であるから, 初項 7, 8 15 24 35 差 : 791113 ゆえに bn=7+(n-1)・2=2n+5 よって, n≧2のとき n-1 k=1 an=a1+(2k+5)=8+2k+5 5)=8+2 n-1 n-1 k=1 k=1 (+) =8+2・ 1/12(n-1)n+5(n-1)=n²+4n+3 また,初項は α = 8 であるから,上の式は n=1のとき ☆ 「n≧2 のとき」とい 条件を忘れないよう k=(n-1)- -1 k=1 2 初項(n=1の場合: 特別扱い。 にも成り立つ。 以上により, 一般項 an は an=n2+4n+3 (2) 数列{bm} は, 2, 4, 8, 16, 比2の等比数列である。 ゆえに よって, n≧2 のとき であるから, 初項 2, 公 bn=2.2"-1=2" 5 7 11 19 35 WW 差 : 2 4 8 16 ← n≧2のとき」とい n-1 an=1+2=5+ 2(21-1-1) 条件を忘れないよう -=2"+3 k=1 2-1 また,初項は α = 5 であるから,上の式は n=1のとき ←初項(n=1の場合 にも成り立つ。 以上により,一般項an は an=2"+3 特別扱い。 基 C

未解決 回答数: 1
数学 高校生

・数C 式変形がどうなっているのか教えてほしいです、よろしくお願いします

634 基本 例題 30 線分の平方に関する証明 0000 △ABC の重心をGとするとき,次の等式を証明せよ。 (2) AB2+AC2=BG2+CG2+4AG2 (1) GA + GB + GC= 0 D ( 基本 15 重要 33. 基本 71、 指針 (1) 点を始点とすると, 重心Gの位置ベクトルは 0は任意の点でよいから, Gを始点としてみる。 ABO OG = (OA+OB+OC) (2)図形の問題→ベクトル化も有効。 すなわち, AB2 など ( 線分)には AB=|AB|=|6-a として,内積を利用するとよい。 なお,この問題では BG?, CG2, AG2 のように, G を端点とする線分が多く出てくる から,Gを始点とする位置ベクトルを使って証明するとよい。 すなわち、GA=d, GB=6,GC= として進める。 (1)の結果も利用。 CHART 線分)の問題 内積を利用 (1) 重心Gの位置ベクトルを, 点 0 LA 解答 に関する位置ベクトルで表すと 三 OG= (OA+OB+OC) である 3 文 G 別解 (1) GA+GB+GC =(OA-OG)+(OB-OG) + (OC-OG) =OA+OB+OC-30G =0 から,点Gに関する位置ベクト ルで表すと B C GG=1/21 (GA+GB+GC) 3 OA: 4:00 ゆえに GA+GB+GC=0 GG=0 (2) GA=a, GB=, GC= c とすると,(1)の結果から a+b+c=0 ゆえに 条件式 また よって AB=b-a, AC=cka=-2a-6 AB2+AC2-(BG'+CG2+4AG2) =|AB|+|AC|-|BG+CG+4|AGI) =16-a+1-24-6 2G-1-6²-la+61-41- ゆえに =(16-26 a+la)+(4a²+4㕯+1612) -16-(la+2ab+16)-4a² =0 ベクトル AB2+AC2=BG2+CG2+4AG2 HADA HOBA 練習 次の等式が成り立つことを証明せよ。」( ② 30 (1) △ABCにおいて, 辺BCの中点をMとするとき B'+AC2=2(AM'+BM) (中線定理) (2) △ABCの重心をG, 0 を任意の点とするとき AG2+BG2+CG2=0A2+ OB2+ OC2-30G 2 文字を減らす方針で <A=B⇔A-B = 0 AB²=|AB|²

解決済み 回答数: 1
数学 高校生

これの(2)のr≠1の時のRの因数分解の道筋教えてください🙇‍♀️

430 基本 13 等比数列の和 (1) (1)等比数列 α 302 90°, し, 0 とする。 10000 ・の初項から第n項までの和Sを求めよ。 ただ (2) 初項 5. 公比の等比数列の第2項から第4項までの和が30であると 実数の値を求めよ。 指針等比数列の和 [1] キ1のとき S= a(-1) r-1 →r1, r=1で, 公式 [1], [2] を使い分ける。 p.427 基本事項 重要 [2] r=1のとき (1)初項α、公比3 の等比数列の和→3a1, 3a=1で使い分ける。 (2)第2項5r を初項とみて, 和をの式で表す。 CHART 等比数列の和 キ1かr=1に注意 (1)初項 α,公比 3a, 項数nの等比数列の和であるから < (公比) = 3a2 a{(3a)"-1} 1 解答 [1] 341 すなわちαキー 3 のとき Sn= [2] 3a=1 すなわち a= 1/12 のとき Sn=na= -n 3a-1 1 3 =3a 公比3aが1のとき a でないときで場合分け 基本 初項から ついて、 初 針 (2)初項 5,公比rの等比数列で,第2項から第4項まで 初項5,公比から の和は、初項 5, 公比r, 項数3の等比数列の和と考え られる。 もとの数列の第2項から第4項までの和が-30 であるから [1] r≠1 のとき 51(3-1)=-30 r-1 整理して r(r2+r+1)=-6 すなわち +re+r+6=0 因数分解して (r+2)(re-r+3)=0 rは実数であるから r=-2 [2] r=1のとき 第2項から第4項までの和は3.5=15 となり,不適。 r=-2 以上から 注意 等比数列について, 一般項と和の公式のの指数は異なる。 a2=5r, as=5r2, =53 よって,和を 5 +52 +53 としても よい。 473-1 =(-1)(r2+r+1) <1 11 6-2 -22-6 1-13 0 x²-r+3=0は実数解 もたない。 a2=α3=a=5 一般項 an=ar 和 Sn= a(r”-1) r-1 rの指数はn の指数はn-1

解決済み 回答数: 1
数学 高校生

波線が引いてある部分についてです。最後の×3は何を表していますか?

基本(例題9 (全体)(・・・でない)の考えの利用 10000 |大,中, 小3個のさいころを投げるとき, 目の積が4の倍数になる場合は何通り あるか。 [東京女子大] 本 指針 「目の積が4の倍数」を考える正攻法でいくと,意外と面倒。 そこで、 (目の積が4の倍数)=(全体)-(目の積が4の倍数でない) として考えると早い。 ここで, 目の積が4の倍数にならないのは,次の場合である。 [1] 目の積が奇数→3つの目がすべて奇数0 →偶数の目は2または6の1つだけで、 2つは奇数100 差50てい 指 早道も考える CHART 場合の数 (Aである)=(全体)(Aでない)の技活用 わざ 解答 目の出る場合の数の総数は 6×6×6=216(通り) 解答 目の積が4の倍数にならない場合には,次の場合がある。よい。) [1] 目の積が奇数の場合 (I+1)×(1 と書いても 積の法則(6" 奇数どうしの積は奇 3つの目がすべて奇数のときで 3×3×3=27 (通り) 1つでも偶数があれば [2] 目の積が偶数で, 4の倍数でない場合 積は偶数になる。 3つのうち, 2つの目が奇数で、残りの1つは2または64が入るとダメ。 の目であるから1(32×2)×3=54 ( [1], [2] から, 目の積が4の倍数にならない場合の数は 27+54=81 (通り) よって,目の積が4の倍数になる場合は (の) 216-81=135 (通り) 掛け(全体)・・・でない) HOON (

解決済み 回答数: 1
数学 高校生

Aの座標が3a,3bなのはどうしてですか?

116 基本 例題 67 座標を利用した証明 (1) △ABCの重心をGとするとき, AB2+BC2+CA2=3(GA2+GB +GC)が 成り立つことを証明せよ。 CHART & THINKING y 基本 例題 68 p.112 基本事項 31 51 座標を利用した証明 座標を利用すると、 図形の性質が簡単に証明できる 場合がある。 そのとき、 座標軸をどこにとるか, 与 えられた図形を座標を用いてどう表すかがポイン トとなる。 そこで, あとの計算がスムーズになるよ うに、座標軸を定める ② 変数を少なく A(x1, y₁) B(x2,y2) (x+y+xy+x+a) C(x3,y2) 0 ↓辺BC をx軸上に。 y ★3点A(5,1 Dの座標を求 CHART & 「平行四辺形】 頂点の順序が いことに注意。 形のパターン Dの座標を求 2本の A(x1,y) ( 1 0 を多く くるように0 が多くなるようにとる。 1 問題に出てくる点がなるべく多く座標軸上に O B(x2, 0) C(x3, 0) を利用すると もっとよい方法は? 2つの頂点を原点に関して対称にとる 解答 残りの頂点 — 変数の文字を少なくする。 これらをもとに, 点 A, B, C の座標を文字でどう表すかを考えよう。 直線 BC をx軸に,辺BCの垂直 理由? ←10を多く 二等分線をy軸にとると, 線分三二a,36) BCの中点は原点0になる。 A(3a, 36), B(-c, 0), C(c, 0) ← ② 変数を少なく G(33 平行四辺形 [1] [1] 平 線分 D したが [2]平 線分 G(a,b) とすると, Gは重心であるから, 01 A(a, b) とすると, b B C となり計算が G(a, b) と表すことができる。 このとき AB2+BC2+ CA2 ={(-c-3a)+(-3b)2}+{c-(-c)}+{(3a-c)2+(36)2} =3(6a2+662+2c2) ・① (-c, 0) O (c,0) x 少し煩雑。 した 両辺を別々に計算して 比較する。 [3] = 線分 GA2+GB2+GC2 ={(3a-a)2+(3b-b)2}+{(-c-a)+(-b)2} +{(c-a)+(-b)2} =6α²+6b2+2c2 ①② から AB2+BC2+CA=3(GA2+GB2+GC2) 注意 更に都合がよくなる ようにと, A(0,36)など とおいてはいけない。この 場合, Aはy軸 (辺BCO 垂直二等分線) 上の点に 定されてしまう。 以上 PRACTICE 67° (1) ∠ABCの辺BCの中点をMとするとき, AB'+AC'=2(AM'+BM)(中線定理) が成り立つことを証明せよ。 (2)△ABCにおいて, 辺BC を 3:2 に内分する点をDとする。このとき, 3(2AB2+3AC2)=5(3AD2+2BD) が成り立つことを証明せよ。 P

解決済み 回答数: 1
1/418