学年

教科

質問の種類

数学 高校生

下の問題を二枚目の写真のように解きました。 このやり方だと,XとYの値が求めれなかったのですが,求め方はありますか? また,解説のように解く方がいいですか?

その 基本 89 した 00000 実数x,yx+y2=2を満たすとき, 2x+yのとりうる値の最大値と最小値を 求めよ。 また、そのときのx,yの値を求めよ。 指針 [類 南山大 ] 基本101 条件式は文字を減らす方針でいきたいが,条件式x2+y2=2から文 字を減らしても2x+yはx,yについての1次式であるからうま くいかない。 そこで, 2x+y=t とおき,tのとりうる値の範囲を調べることで, 最大値と最小値を求める。 ← 2x+y=t を y=t-2x と変形し,x2+y2=2に代入してyを消 去すると x2+(t-2x) =2となり,xの2次方程式になる。 xは実数であるから,この方程式が実数解をもつ条件を利用する。 実数解をもつ⇔D≧0 の利用。 見方をかっ CHART 最大 最小 =tとおいて,実数解をもつ条件利用 20 2x+y=t とおくと y=t-2x ① 解答 これをx2+y2=2に代入すると したがって x2+(t-2x)=2 整理すると 次 5x2 -4tx+t2-2=0 自去す このxについての2次方程式 ② が実数解をもつための 条件は、②の判別式をDとすると (+)=S+ツの不等式)。 (2) D≧0 ここで D=(2t)-5(2-2)=-(t-10) D≧0から 参考実数a, b, x, yに ついて,次の不等式が成り 立つ (コーシー・シュワル CONCE(ax+by)≤(a+b)(x²+ y²) [等号成立は ay=bx ] この不等式に a=2,6=1 (を代入することで解くこと できる。 t2-10≤0 フェ これを解いて -√10 ≤t≤√10 t=±√10 のとき, D=0で,②は重解 x=- -4t_2t を のとき②は t=±√10 2.5 5 もつ。=±√10 のとき x=± 2/10 よって 5x2+4√10x+8=0 よってまたは 5 /10 ①から y=± (複号同順) 5 よって x= 2/10 10 y= のとき最大値10 主 ゆえに 2√2 2/10 x=± =土・ 5 √ 10 5 ” 5 2/10 √10 x=- 5 " y=- のとき最小値√10 √5 ①からy=土- 5 (複号同順) 5 としてもよい。 である。 たすとき の

解決済み 回答数: 1
数学 高校生

⑷のとっかかりかたとして、模範解答は写真2枚目のような感じで、問題文を言い換えて考えていました。 わたしは写真3枚目のような感じで、問題文そのままやろうとしたのですがそれだとだめですか??またこんな感じで問題文を言い換えてとっかかる問題のコツを教えてほしいです。

(考え方) 【4】 αを実数の定数として、 2次関数 f(x) を f(x)=x²-4ax + α + 4a と定める、次の各問いに答えよ. (1) は結果のみを記入せよ。 (2)〜(4)は結果のみではな く、考え方の筋道も記せ. (1) a=1のときのy=f(x), すなわち y=x2-4x+5 のグラフをかけ、そのとき、頂点の座標およびy軸との交点の座標を記入するこ と、 (2) y=f(x) のグラフの頂点のy座標が1となるようなαの値を求めよ. (3) 関数g(x) を g(x)=x-4x +5 + f(x) と定め,0≦x≦3におけるg(x)の最小値を m とする. (i) αの値で分類して, mをa を用いて表せ. (i) αを横軸に, mを縦軸にとっての変化を表すグラフをかけ. (Ⅲ)m の最小値を求めよ. (4)(3)において, 0 ≦g(x) ≦4を満たすxの値が0≦x≦3の範囲に存在しないよう なαの値の範囲を求めよ. 131 利用 (50点) 1) 2次関数のグラフは、頂点の座標, y 軸との交点などを調べ, 上に凸か下に凸かに注意してかきます。 2) f(x)はxの2次関数です. 平方完成して, グラフの頂点を求めます. =) (i) y=g(x) のグラフの軸の位置で場合分けします. 軸と定義域 0≦x≦3の位置関係に注意しましょう (ii)(i)の結果についてをαの関数と考えるとグラフがかけます. (i)の場合分けに応じ tain to H = ~t. 10 22

解決済み 回答数: 1
数学 高校生

(ア)の問題でなぜkとおけるのですか?

(1) AB=8, を AB, AC で表せ。 V (2) AOAB において, OA=d, OB=1とする。 (ア) ∠O を2等分するベクトルは, ることを示せ。 (+) (kは実数 と表され (イ) OA=2,OB=3, AB=4 のとき, ∠Oの二等分線と ∠Aの外角の二等分 線の交点をPとする。 このとき,OP を d, 方で表せ。 指針 (1) 三角形の内心は、3つの内角の二等分線の交点である。 次の「角の二等分線の定理」を利用し、 まずAD を AB, AC で表す。 右図で AD が △ABCの∠Aの二等分線 ⇒ BD:DC=AB: AC 次に, △ABD と ∠Bの二等分線 BI に注目。 B' 基本26 (2)Oの二等分線と辺 ABの交点をDとして,まずOD を a, b で表す。 [別解] ひし形の対角線が内角を2等分することを利用する解法も考えられる。 つ まり, OA'=1, OB'=1となる点 A', B' をそれぞれ半直線 OA, OB 上にとっ てひし形 OA'CB' を作ると, 点Cは ∠Oの二等分線上にあることに注目する。 (イ)(ア)の結果を利用して, 「OPをa, で2通りに表し, 係数比較」の方針で。 → ACOA となる点Cをとり、(ア)の 点Pは∠Aの外角の二等分線上にある 結果を使うとAPはa, で表される。 OP = OA+APに注目。 AO (1)△ABCの∠Aの二等分線と辺BCの交点をDとすると Cの二等分線と辺 BD:DC=AB:AC=8:5 ABの交点をEとし 答 5AB + 8AC { AE: EB=5:7, よって AD= 13 8 56 また, BD=7• = であるから 13 13 56 AI: ID=BA:BD=8: =13:7 70-TO-HA 13 ゆえに 13 AI-202AD=122.5AB+8AC-1AB+/AC 13 20 20 13 4. (2)(ア∠Oの二等分線と辺 AB の交点をDとすると AD:DB=0A:OB=||:|| 3 =2:3 このことを利用して 角の二等分線の定理 を2回用いると求め られる。 角の二等分線の定理 を利用する解法。 0=-8 15 EI: IC= : 5 10 B 7 D もよい。 ゆえにOD= |6|0A+|a|OB aba 方 = lal+161 + a+b a b 16 ab される。 求めるベクトルは,t を t≠0 である実数としてOD と表 t=kとおくと, 求めるベクトルは |a|+|6| + 6 (kは実数 k≠0) 161 A a a tOD= a+ba 0

未解決 回答数: 1
数学 高校生

(4)からまったくわかりません... 解説お願いします

Think 例題 153 総合問題 右の図は,生徒20人に行った 整理と分析 301 **** 点で図形の得点が5点である生徒の 人数は2人である. の結果をまとめたものである. 関数 の得点xを横軸に,図形の得点yを 縦軸にとっている.図の中の数値は xyの値の組に対応する人数を表し ている。 数と図形のテスト(ともに10点満点) 10 9 8 1 7 1 11 6 1 11 y 5 121 4 たとえば、関数の得点が7 3 1 22 1 2 2 1 各生徒の得点について, x+y の最大値と, x-yの最大値 を求めよ. 0 01234 5 6 7 8 9 10 X が S 5. (2)図をもとに,次の表を完成させよ.また,各テストの得点の平均値 を求めよ. 点(点) 0 1 2 3 4 5 6 7 8 9 10 2435 10 関数(人) 0002 図形(人) 012335231 (3)(2)の表を使って各テストの標準偏差を求めると, 関数は2.8点 図形は3.6点, 関数と図形の得点の共分散は2.55 であった. 関 数と図形の得点の相関係数の値を四捨五入して小数第2位まで求 めよ.ただし,√7=2.646 とする.A0.80 右の表は、別の5人の生徒 A, B, 5人の生徒 ABCDE C,D,Eに同じ問題のテストを行 った結果である. 5人の関数と図 形の得点の平均値は, それぞれ 20 165 関数の得点 7 4 6 9 4 6 図形の得点 5 4 5 6 5 人の得点の平均値と同じであった.20人にこの5人を加えた合計 25人の生徒に関する関数と図形の得点の相関係数Rの値を小数第 2位まで求めよ. (5)これらのテストの結果について、次の①~③は正しいといえるか、 ① 生徒 25人の得点について、関数と図形の平均値からの散らば り具合は同じである. ② 生徒 20人の関数と図形の得点の正の相関はやや強いが,A~ Eの5人が加わると正の相関は少し弱まる. ③ 生徒 25人の図形の得点が一律に1点上がれば,25人の関数と 図形の得点の相関係数の値はより大きくなる. 第5章

回答募集中 回答数: 0