学年

教科

質問の種類

数学 高校生

なぜ青線部のことがいえるのですか?

18 第1章 数と式 標 問 6 式の値 ( 分数式) 19 解答 (1) 2x-y+z=0, x+2y+8z=0より (東亜大) x=-2z,y=-3z よって, ry+y+zx_(-2z)(-3z)+(-3zz+z(-2z) x²+ y²+z2 (-2z)+(-3z)2+22 分数式を1つの文字で表す 2式を連立して, x,yについ て解く (1) 実数x, y, はいずれも0でなく, 2x-y+z=0とx+2y+8z=0 の xy+yz+zx 両方を満たすとき x² + y²+z² の値を求めよ. ytz_z+x+y=mとするときの値を求めよ. (2) 2 I y また,(1+2) (1+72)(1+/-) の値を求めよ. (6-3-2)z2 1 = (東海大) (4+9+1)2214 (2) I 精講 (1) 文字が3つありますが 解法のプロセス 2x-y+z=0, x+2y+8z=0 を利用して, 1つの文字で残り2つの文字を表現 (1) 2c-y+z=0, x+2y+8z=0 xy+yz+zx し、 に代入します. x²+ y²+z² を連立してz,yをを用い て表す. (2) 分数式の値を求める際,その値をとで もおいて考えていくとラクなことが多いのです. ↓ my+yz+x この問題では、問題文でmとおいてあります. +2+2に代入する. I y+z_z+x+y=mより y 2 y+z=mx ①, z+x=my..... ② x+y=mz... ③ ①+②+③ より 2(x+y+z)=m(x+y+z) よって, (x+y+z) (m-2)=0 したがって, x+y+z=0 またはm=2 x+y+z=0のとき, y+z=1=-1 I y+z. =m より y+z=mx ...... ① I +1=mより2+x=my....... ② y 同様に, z+x= y=-1, y y x+y=-=-1 2 2 x+y=mよりx+y=mz... ③ 2 y+z=-x を代入 m=2となるx, y, zが存在 することを主張している なお、m=2のとき ①②よ りェyが得られ、同様に ② ③ より y=z が得られ 解法のプロセス よって, m=-1 y+z_z+x+y=m (2) 2 I y また,r=y=z (≠0) のとき =2となる? したがって,m=-1,2 を y+z=m, 2+1=m y (1+1/2)(1+7)(1+2/)=ty.y+zz+p y Z ytzztexty る I y 2 =m³ =-1, 8 として, ① ② ③を連立してmを求めます. こ のとき,x,y,zの文字を消去していくのも1つ の方針ですが,x,y,zが同等の扱いを受けてい るので(ryやzに対して特別な扱いを受けて いない), x, y, zの対称性を利用して処理するの が簡単でしょう (標問9参照)。 ①+②+③ をつくると 2(x+y+z)=m(x+y+z) (x+y+z) (m-2)=0 が得られます. これから x+y+z=0 またはm=2 となります. I x+y=m 2 と扱って [y+z=mx z+x=my x+y=mz とする. 演習問題 ↓ 6-1 x+4y=y-3.z≠0のとき、 2x²-xy-y² この連立方程式を解く、 2x2+xy+y2 の値を求めよ. (山梨学院大) IC (6-2x+y=y+z=2のとき、この式の値を求めよ。 (札幌大) y 章 1

解決済み 回答数: 1
数学 高校生

マーカーの部分を教えてほしいです。

92 重要 例題 54 1次関数の決定 (2) 関数y=ax-a+30≦x≦) の値域が 1≦y≦b であるとき,定数a, bo 値を求めよ。 CHART SOLUTION グラフ利用 端点に注目 1次関数 y=ax+b というと, α = 0 であるが,単に関数というときは, α=0 の場合も考えなければならない。 基本 この例題では,xの係数がαであるから α>0, a=0, a<0 の場合に分け て, 値域を求める。 ...... 次に,求めた値域が 1≦y≦b と一致するように a,bの連立方程式を作って解く。 このとき,得られたαの値が場合分けの条件を満たしているかどうか吟味する のを忘れずに。 x=0 のとき y=-a+3, x=2のとき y=a+3 [1] YA [1] α>0のとき この関数はxの値が増加するとyの値も増加するから, x=2 で最大値 6, x=0で最小値1をとる。 よって a+3=b, -a+3=1 1 これを解いて a=2, b=5 これは, α>0を満たす。 a+3 0 2 x x [2] a=0 のとき この関数は y=3 定数関数 このとき, 値域は y=3であり、1≦y≦bに適さない。 [3] α <0 のとき 31. この関数はxの値が増加するとyの値は減少するから, x=0 で最大値 6, x=2で最小値1をとる。 ba+3 よって -α+3=b, a+3=1 これを解いて a=-2,6=5 これは, a<0 を満たす。 1 a+3 0 2 [1]~[3]から (a,b)=(2,5),(-2,5) PRACTICE・・・ 54 ③ (1) 定義域が −2≦x≦2, 値域が −2≦y≦4 である1次関数を求めよ。 (2)関数y=ax+b (b≦x≦b+1)の値域が-3≦ys5であるとき、定数a, bo 値を求めよ。 (3)関数y=ax+b (1≦x≦3)の最大値が最小値の2倍であり、グラフが点 (1,2 を通るという。 定数a, b の値を求めよ。

解決済み 回答数: 1
数学 高校生

(1)の解答の"軸はy軸"という部分がわかりません。

解答 86 基本 例題 48 2次関数のグラフの位置関係 次の2次関数のグラフは, 2次関数 y= x2 のグラフをそれぞれどのよう 00000 基本例題 に平行移動したものかを答えよ。また,それぞれのグラフにおける軸と を求めよ。 (1) y=1/2x+1 (2)y=1/2(x+2)2 (3)y=1/2/(x-4)2+2 1p.83 基本事項4 基本49 CHART SOLUTION 2次関数y=a(x-p2gのグラフ y=ax2 のグラフをx軸方向に, y 軸方向にだけ平行移動 軸は直線xp, 頂点は点(b,g) (1)~(3)の関数はすべてy=1/2x-p2gの形であるから,そのグラフは, 1 2次関数 y=x2 のグラフを平行移動したグラフである。 よって,(1)~(3)において, p, g を求めればよい。 (2)x+2=x-(-2) すなわち y=1/2(x-2)とする。 (1)y軸方向に1だけ平行移動したもの。 軸は軸, 頂点は点 ( 0, 1) (2)与えられた関数の式を変形して y=1/2(x-(-2)2 よって, x軸方向に-2だけ平行移動したもの。 軸は直線x=-2, 頂点は点(-2,0) 8116 p = 0 つまり,x軸方向 には移動していない。 なお, y 軸を 「直線 x=0」とも表す。 次の2次関数 (1) y=2x2- CHART 解答 2次関 平方完 軸は 一般に すると ことに (1) I (2) (1) 2x2-6- =2{(x =2(x- よって したが になる。 ◆ 「2だけ平行移動」 ではない! 軸方向に 4, y 軸方向に2だけ平行移動したもの。 x+2=x-(-2) 軸は直線x=4, 頂点は点(42) と考える。 (1)|| y y (3) y また, (2)-xz == -{( =-( よっ した にな また, 2 x -20 2 4 14 x i PRACTICE・・・ 48 2次関数y=-3(x+2)- のグラフをx軸方向に 直線

解決済み 回答数: 1