学年

教科

質問の種類

数学 高校生

この問題の場合分けのところなのですが、各場合分けの答えを出した後に「これはa<1を満たす」と言ったような文言が解答にないのはどうしてですか?

と、次の 3 3章 13 1 2次不等式 重要 例題 120 連立2次不等式が整数解をもつ条件 000 xについての不等式x2-(a+1)x+α <0,3x2+2x-1>0を同時に満たす整数x がちょうど3つ存在するような定数 αの値の範囲を求めよ。 t [摂南大〕 基本 37 117 ①まず,不等式を解く。不等式の左辺を見ると、2つとも因数分解ができそう。 なお,x2-(a+1)x+α <0は文字αを含むから, αの値によって場合を分ける。 ②数直線を利用して、題意の3つの整数を見定めてαの条件を求める。 CHART 連立不等式 解のまとめは数直線 x2-(a+1)x+a<0 を解くと (x-a)(x-1)<0 から α <1のとき a<x<1 α=1のとき 解なし α>1のとき 1<x<a ① 3x2+2x-1>0を解くと (x+1)(3x-1)>0から x<-1.1/23<3 ①,②を同時に満たす整数x がちょうど3つ存在するの は α <1 または α>1 の場合である。 [1] α <1 のとき 3つの整数xは x=-4, -3, -2 [1] (2) -51-4-3-2-1011 1α=1のとき,不等式は (x-1)20 これを満たす実数 x は 存在しない。 実数 A に対し A2≧0 は 常に成立。 A'≦0 なら A = 0 A°< 0 は 不成立。 基本 解答 0は2枚 なお、 別するた している。 よって -5≤a<-4 a [2] α>1のとき [2] a 8 3 13 2 x x <-5<a<-4としないよ うに注意する。 a<x<-1の範囲に整数 3つが存在すればよいか ら, a=-5のとき, -5<x<-1となり条件 を満たす。 ●3 4 3つの整数xは よって x=2,3,4 4 <a≦5 [1], [2] から, 求める α -1 0 1 2 113 の値の範囲は -5≦a<-4,4<a≦5 +5 [2]のα=5のときも同 様。 (01-)=(x2) 不等号にを含むか含まないかに注意 検討 上の例題の不等式がx2-(a+1)x+α ≦ 0, 3x2+2x-1≧0 となると, 答えは大きく違ってく る (解答編 p.96 参照)。 イコールがつくとつかないとでは大違い!!

解決済み 回答数: 1
数学 高校生

なぜ弦の長さを2lと置くのですか?

解答 円 ②の中心 (0, 0) 直線 ①の距離は, |2| √2+(-1) |2| 2 √55 == 求める弦の長さを2ℓ とすると,円の 半径が22より Think 例題 89 弦の長さ(1) **** 直線 y=2x+2 ① が円 x+y'=8......② によって切り取られて できる弦の長さを求めよ. 考え方 図に描いて考える. 円の中心と弦の距離を求めて, 三平方の定理を利用する. y=2x+2 より 2x-y+2=0 2ℓ とおくのがポイ ント ay 2√2 2√2 2√2 M €² + (√²²)²= (2√2)² 2 x 8= (22) 2 V ME) 36 + 三平方の定理 5 lo より l= =6√5 5 よって、 弦の長さ 2ℓ は, 12/5 5 (別解) ①を②に代入して, x2+(2x+2)2=8 YA 求める長さは2ℓで あることを忘れずに、 解と係数の関係を利 (3,23+2)用する解法 5x2+8x-4=0 ・③ また,円 ②と直線 ①の交点の座 標を(α, 2α+2) (3,2β+2) とす ると,,βは2次方程式 ③ (a,2a+2) E) ふん」の2つの解だから,解と係数の関係より, ちょう 8 α+B=B=14 4 5 長さを l とすると, x Bax²+ bx+c=0 0) 2つの解をα βと すると (E)-(a+B=-- l°=(β-α)+{(2β+2)-(2α+2)}=5(β-α)2 (3-α)a= a aẞ= 55のときだす =5((a+3)-4aß)=5(-)-4()} 2 144 三平方の定理 よって、l>0より、弦の長さは, 12/5 Focus I+ awo+m 弦の長さの問題は、円の中心から弦に垂線を引き、 三平方の定理を利用する D>m> l²+d²=r² 接点の直

未解決 回答数: 1
数学 高校生

この問題でグラフを書くとなっているのですが 3次関数のグラフって書けますか?だいたいって感じですか? 微分してもうまくいかなくて💦 簡単なグラフだったらすみません、、

0000 広めよ。 めよ。 (2)東京電機大 245 246 重要 257 係系に注意 YA 2 151 BA 基本 251 3次曲線と接線の間の面積 「もの面積Sを求めよ。 393 00000 曲線y=x-5x2+2x+6とその曲線上の点(3, -6) における接線で囲まれた図 | 指針 面積を求める方針は 1 グラフをかく ・基本 248 250 重要 252 2 積分区間の決定 ③上下関係に注意 また、積分の計算においては,次のことを利用するとよい。 本間では,まず接線の方程式を求め, 3次曲線と接線の共有点のx座標を求める。 3次曲線y=f(x)(x3の係数がα) と直線y=g(x) がx=αで接するとき、等式 f(x)-g(x)=a(x-a)(x-β) が成り立つ。 y=3x²-10x+2であるから, 接線 の方程式は 解答 ERUT SU (-6)=(3・32-10・3+2)(x-3) 曲線 y=f(x) 上の点 (α, f(a)) における接線 の方程式は y-f(a) f'(a)(x-a) 0 すなわち y=-x-3 3 0 x 2 線の概形について _342 参照。 ここで 値を求める必要は この接線と曲線の共有点のx座標 は,x-5x2+2x+6=-x-3の解 である。 -6 これからx-5x2+3x+9=0(*) ゆえに (x-3)(x+1)=0 よって x=3,2-10 y=x-4xにつ =x(x+2)(x-2) 由との交点のx座 x=0, ±2 線 y=3x2 は原点 する, 下に凸の放 したがって図から,求める面積は S={(x-5x2+2x+6)-(-x-3)}dx =S(x-3)(x+1)dx 左辺が (x-3) を因数に もつことに注意して因数 分解。 1-5 3 93 3-6 -9 1 -2 -3 23 1 33 03 1 1 0 ( 7 7章 回新 =S,(x-3)"{(x-3)+4}dx=S{(x-3)"'+4(x-3)")dx(xa)(x-3) x- 4 13 313 -3) 3- +4 3 -1 -64+- == 256 64 3 = =(x-2)^{(x-2)-(B-α)} 3 f(x-a) dx= (x-a)*+1 n+1 +C m 積

解決済み 回答数: 1
数学 高校生

なぜこの問題で、母集団にある2つの3を区別するのか分かりません。どなたか解説お願いします🙇‍♀️

551 (2) 集団から復元抽出によって得られた大きさ16の無 | 母集団の変量xが右の分布をなしている。この母 基本の 例題 て、 84 標 標準偏差 (1) 母集団 {1,2,3,3}から復元抽出された大きさ2の標本 (Xi, X2)につい その標本平均Xの確率分布を求めよ。 00000 x 1 度数 23 計 11 8 6 25 「作為標本をX1,X2, X16 とするとき,その標 本平均Xの期待値 E ( X ) と標準偏差(X) を求めよ。 をとる確率を調べる。 P.547 基本事項 3, p.548 基本事項 餅 (1) X1,X2のとりうる値とそのときのXの値を表にまとめ, Xのとりうる値と各値 (2) まず, 母平均 m と母標準偏差 o を求める。 そして、 次の公式を利用する。 母平均m, 母標準偏差の母集団から大きさんの無作為標本を抽出するとき 標本 平均の 期待値 E(X)=m,標準偏差α(X)=n 2 2章 1 母集団と標本 X+X2 (1)=- 2 解答 P 3-2 215 115060 よって, Xの確率分布は次の表のようになる。 X 1 U の値を表にすると, 右のようになる。 X21 1 X 2 3 3 2 5 16 416 52 4 16 0+8.0~) \1 1 3 計 2 1 3-2 2 32 2 2 2 5-2 5-2 3 2 11 (2)母平均と母標準偏差は 8 m=1. +2・・ +3・ 25 25 65 45 9 3 2 5-2 5-2 3 3 25 25 5 10000 3 3 3 11 8 6 (1) 母集団にある2つの3 9 0= 12. +22. +32. 18.0 25 25 25 を区別して、表にまとめる とよい。 16 4 = V 25 5 したがって, Xの期待値と標準偏差は 9 ' 5 0 E(X)= σ(X)= =m= 16 15 E(X)=m, o(X)= 0 (2)母集団の変量xが右の分布をなしている。この 母集団から復元抽出によって得られた大きさ25の 練習 (1) 上の例題 (1) において, 非復元抽出の場合,Xの確率分布を求めよ。 84 28 x 1 2 3 4 計 度数 2 2 3 3 10 無作為標本を X1,X2,. ・・・・・・, X25 とするとき, その 標本平均Xの期待値 E (X) と標準偏差(X) を求めよ。 p.562 EX52

解決済み 回答数: 1
数学 高校生

調和級数の発散することについての証明の問題です。 ⑵でやりたいことは、Snがm/2+1より大きいから、右辺発散する→左辺の級数も発散するみたいにしたいからなのは分かります。n>=2^nと書くのではなく、nを2^nにおきかえるとと書いたらだめなんですか?

重要 例題 (1) すべての自然数nに対して、 (2) 無限級数1+1/2/2 1 3 k=1 k 1 n 45 無限級数1/n が発散することの証明 2 n 1/12 172 +1が成り立つことを証明せよ。 77 000 + +......+ -+...... は発散することを証明せよ。 基本 34. 重要 44 はさみう 分の公比) (1)数学的帰納法によって証明する。 (2) 数列 列{1} は0に収束するから、p.63 基本例題 34のように、p.61 基本事項2② を利用する方法は使えない。 そこで, (1) で示した不等式の利用を考える。 2 とすると = ここで,m→∞のときn→∞となる。 2章 無限級数 [1] n=1のとき ① とする。 21 k=1k 数学II) =0 Crab とする。 k=1 (1)= +1 ...... 解答 的帰納法を利 も考えられる カード の計算 = 1+1/28-1/3+1 よって、 ① は成り立つ。 [2]n=m(m は自然数) のとき,①が成り立つと仮定すると1/21 このとき 2m+1 2m+1 1 + k=1 k k=1 k k=2+1k -xn -x ≥ -nx" (+1)+2+1+2+2 1 ++ 2m+1 x)S 1 m +1+ 1 + x" (1-x) 2 2m+1 2+2 +::::+ 2m+2m -x m 1 m+1 <2m+1=2".2=2+2" 1 ・+1+ •2m +1 2 2m+1 2 2m+k 2m+2m 2m+1 n+1) 2 ="+nx+1 (2)=21/2とおく。2" とすると, (1) から k →∞のときn→∞で ここで,m→ m 2 よって, n=m+1のときにも①は成り立つ。 (k=1, 2,..., 2"-1) [1], [2] から, すべての自然数nについて ① は成り立つ。 2m 1 m ・+1 k=1 k 2 →∞ lim +1=8 limSn=∞ 118 里 き、 したがっては発散する。 an≦bn liman=∞⇒limbn=∞ (p.343②) →∞ 8122 n=1n なら amil 無限級数1/n”の収束・発散について 数列{a} が 0 に収束しなければ,無限級数 2α7 は発散するが (p.61 基本事項2②), こ 検討 80 n=1 の逆は成立しない。 上の (2) においてlim=0であることから,このことが確認できる。 U 00+u n なお,2は>1のとき収束, p≦1のとき発散することが知られている。 (S) n=1 n' 二大] 練習 80 ④ 45 上の例題の結果を用いて,無限級数 は発散することを示せ。 p.81 EX 32 n=1 31\

解決済み 回答数: 1
数学 高校生

写真の半分から下の「曲線の対称移動」について質問です。点Qの座標が写真のように表せてそれをFに代入するところまでわかるのですが、代入して得られたその式がどうして対称移動して得られるGの式になるのですか。当たり前のことだと思うのですがわからないので教えていただきたいです。 雑... 続きを読む

0 1点・グラフの対称移動 ①点 (a, b) の対称移動 点 (a, b) を 軸に関して対称移動すると 軸に関して対称移動すると 点(-a, 原点に関して対称移動すると ( α, -6) 点 に移る。 b)に移る。 -b)に移る。 点(-a, したもの x軸に関して対称移動した曲線の方程式は 軸に関して対称移動した曲線の方程式は 原点に関して対称移動した曲線の方程式は ② 関数y=f(x) のグラフの対称移動 関数y=f(x) のグラフを -y=f(x) [y=-f(x)] y=f(-x) -y=f(-x) [y=-f(-x)] +7 +7 +( +7 解説 ■対称移動 3 3章 9 2次関数のグラフとその移動 1 平面上で,図形上の各点を, 直線や点に関してそれと対称な位置に移 すことを 対称移動という。 YA (-a, b) (a, b) b 2) 特に,x軸やy軸を対称の軸とする線対称な位置に移す対称移動と, 原点を対称の中心とする点対称な位置に移す対称移動によって, -a 10 a x 点 (a, b)はそれぞれ次の点に移される。 -b 違いを x軸に関して対称移動: (a,b) 軸に関して対称移動: (a,b) 原点に関して対称移動: (a,b) → (a, b) (a,b) (a, b) → (-a, b) 符号が変わる位置に注意。 ← (a, -b) - 1 - - ■曲線の対称移動 放物線のy軸に関する対称移動について、考えてみよう。 放物線F: y=ax2+bx+c を, y 軸に関して対称移動して 得られる放物線をGとする。 G上の任意の点P(x, y) を とると,この対称移動によってPに移されるF上の点は Q-x, y) である。 点 Q(-x, y) はF上にあるから y=a(-x)2+6(-x)+c すなわち y=ax2-bx+c -)S, G\P(x, Q-x, y) x軸, 原点に関する対称移動についても, 上と同様に考えられる。 すなわち, 放物線y=ax2+bx+c をx軸, y 軸, 原点に関して対称移 動して得られる放物線の方程式は,次のようになる。 x軸に関して対称移動: -y=ax2+bx+c 軸に関して対称移動: y=α(-x)^2+6(-x)+c 原点に関して対称移動:-y=α(-x)2 +6(-x)+c 以上のことは, 2次関数に限らず、一般の関数y=f(x) のグラフにつ いてもまったく同じように考えられ,上の②が成り立つ。 なお、曲線に対し,Cをx軸 (y軸)に関して対称移動し、更にy軸 (x軸)に関して対称移動した曲線をCとすると, CはCを原点に関 して対称移動したものと同じである。 キー 0 x y=ax2+bx+c で 次 のように文字をおき換 える。 Ay――y <xx < xx, y-y (x 軸対称移動) かつ (y軸対称移動) (原点対称移動)

解決済み 回答数: 1
数学 高校生

24(2)について質問です。 青線部はなぜ-1<a<0、0<a<1/3ではないのですか?

54 第2章 2次関数 55 標問 24 すべての(ある) に対して... 不等式 ax²+(a-1)x+a>0について, (1) すべての実数に対してこの不等式が成り立つような定数αの値の範囲 を求めよ. この6つのグラフを考えると, すべての実数 に対して ax2+bx+c > 0 となるのは, a>0, (D=) b2-4ac<0 のときであることが納得できるでしょう. 次に, ・解法のプロセス ar2+bx+c>0 (a≠0) となる実数ェが存在する。 > または 62-4ac>0 (2)この不等式を満たす実数が存在するような定数αの値の範囲を求めよ. (千葉工業大・ 改) ax2+bx+c>0 となる実数xが存在する 条件はどうでしょうか. 精講 2次不等式 ar²+bx+c>0 (α≠0) について考えることにします。 この2次不等式が すべての実数xに対して成 立する条件を調べてみましょう. 解法のプロセス 前の6つのグラフを見ると, α > 0 ならO.K. です.そして,a <0 でも、 (D=) 624ac0 な らO.K. です.つまり ◆グラフがx軸より上側の部分 に(も)あればよい すべての実数に対して ax2+bx+c>0 (a≠0) a0 または (D=) 62-4ac > 0 が条件となります。 ↓ a>0 かつ 6-4ac < 0 y=ax2+bx+c (a≠0) のグラフを利用して考 えるとわかりやすいです. 解答 すべての実数xに対して ax+bx+c>0 となるのは, y=ax2+bx+c のグラフがx軸より上に浮い ていることです. いいかえると, y=ax2+bx+c a>0 (a-1)2-4a²<0 下に凸で,軸と共有点をもたないこと, つま りα > 0 かつ (D=) 62-4ac < 0 が条件です。 αの符号, Dの符号によって, y=ax2+bx+c のグラフは次のようになります。 a>0 のとき (D=) b2-4ac>0 (D=) 63-4ac=0 (D=) b2-4ac <0 + + + ax2+(a-1)x+a>0 ......(*) (1) α=0 のとき (*)は-x>0 となり, これを満たすェは x < 0 である. 次に, α≠0 のときについて調べる. すべての実数に対して2次不等式 (*) が成り立つ条件は である. (α-1)^-4a²<0 より (a+1) (3α-1)>0 よってa<-1, 1/32 <a a>0であるから 1/18<a (2)(i) a=0 のとき, (*) を満たすxが存在する. (ii) α=0 のとき, (*) を満たす実数ェが存在する条件は a>0 または (α-1)^-4a²>0 である. (a-1)2-4a2>0より 1<a</1/23 -3a²-2α+1 <0 より, 3a²+2a-1>0 の係数が正またはD>0 ◆ェの係数が正かつ D<0 α < 0 のとき (D=) 62-4ac>0 (D=) 62-4ac=0 (D=) b2-4ac<0 よって, -1<a (ただし, a≠0) したがって, (i), (ii)より -1<a ◆α≠0 のときについて調べて いる © + ① 演習問題 24 すべての実数xについて, ar'+(a-1)x+α-1<0 が成り立つような αの値の範囲を求めよ. 第2章

解決済み 回答数: 1