学年

教科

質問の種類

数学 高校生

試行のヒント②について どこに着目すれば、nの偶数か奇数かの場合分けが思いつくのでしょうか?

テーマ 26 確率 ⑥ ★★☆ C 30分 問題26 1からnまでの番号のついた n枚の札が袋に入っている。 ただい 同じ番号の札はないとする。 この袋から3枚の札を取り (京大文系・05前) 出して, 札の番号を大きさの順に並べるとき, 等差数列になっている | 確率を求めよ。 (理解 試行のヒント① 「nがらみ」 ですね。 n に, 具体的な値を代入して実 験しましょう。 n = 3,7,8でやってみてください。 等差数列は何通 りできますか? 1 2②3 こんな問題ですね。 取り出し方は全部でn C3 通り ですが,「等差数列になっている」のは どんなときでしょうか? ちょっとわか らないので、 具体的に考えてみましょう。 「n≧3」 なので, n=3とすると, 3C3通り 1, 2, 3 (同時に)3枚取り出す ( 2 C3 通り) 0.0.0 等差数列になっている 第4音 確率 (合の数合わ 1枚目2枚目3枚目の区別はあり ませんから, „P3通りではないです。 「大きさの順に並べる」のは3枚が決 まると1通り。 ととなら ①4 <⑦の1通り。 (「大きさ」の 「小さい方」 から並べました。) り出し方は全部で 3C3 = 1 (通り)しかなく, イマイチです。 1, 2, 3 等差数列にはなっていますが…....。もう少しぃを大きくしてみましょう。 n = 7 とすると, CLES 123 4 5 6 7 ですから, 1, 2, 3 4 5 6 7 から3枚取り出して等差数 のは、 ●公差1の等差数列 1, 2, 3 2, 3, 4 3, 4④, 15 4, 5, 12 15 6 16 ■公差 1 1, 2, 3 7 の5通り 公差4以上はムリなので,全部で 5+3+1=9 (通り) n=8の場合も調べてみましょうか。 4 4 7 18 5 16 6 C3通り ●公差2の等差数列 7 6 5, 7 の3通り 18 の6通り 3通り ■公差 2 1, 3, 5 2, 4, 6 17 ● 公差3の等差 こちらも公差4以上はムリで、 全部で 6 +4 + 2 = 12 通り 3枚のうち、一番小 て数えるとわかり 8 の4通り の1通り では,一般のnで考えてみましょう。 ● 公差 12

未解決 回答数: 1
数学 高校生

もう少し詳しく解説して欲しいです 1行目からよく分かっていません…… お願いします🙇‍♀️ ちなみに、青チャートP523の例題92です

るとき、 ak 既約分数の和 重要 例題 92 pは素数,m,n は正の整数でm<nとする。mとnの間にあって, pを分母と 00000 する既約分数の総和を求めよ。 ●それ以上約分できない分数 既約分数の和→ 全体の和 から 整数の和を除くという方針で求める。 ▽ まず, 具体的な値で考えてみよう。 例えば,2と5の間にあって3を分母とする分数は 7 8 9 10 11 12 13 14 3' 3'3 3 3' 3 3' 3 (*) であり,既約分数の和は(*) の和から3と4を引くことで求められる。 このことを一般化すればよい。 解答 9 Þ まずg を自然数として,m<<nを満たす を求める。 pm<g<pnであるから g_pm+1 よって g=pm+1,pm+2,.., pn-1 p D' これらの和をSとすると S₁= pm+2 p pn-pm-1 (m+n) 2 (pn−1)−(pm+1)+1(pm+1 + pn=1) 2 ⑩のうちが整数となるものは p _=m+1, m+2, これらの和を2 とすると S2= ………,n-1 pn-1 p (n-1)-(m+1)+1{(m+1)+(n-1)} -1/12/(m+n)(n-m)(b-1) 2 n-m-1(m+n) ゆえに、求める総和をSとすると, SS-S2 であるから S= n-m-1(m+n) pn-pm-1(m+n)-カー 2 -(m+n){(n−m)p−(n−m)} [同志社大] (*)は等差数列であり、3と4は 2と5の間にある整数である。 2 基本89.90 「mとnの間」であるから, 両端のとnは含まない。 pm+1 ① <初項 公差 1/1 p 等差数列。 45₁ = n(a+1) mとnの間にある整数。 ◄ Sn=½n(a+1) (全体の和) (整数の和) 523 3章 12 等差数列

未解決 回答数: 1
数学 高校生

108.2 記述に問題ないですか? また、解答はなぜ0<p<q<rと書いているのですか? 素数の中で最小は2なので2≦pと言えないですか? (なので自身の記述では2≦p<q<rと書いています。)

474 00000 基本例題108 素数の問題 (1) nは自然数とする。 n2+2n- 24 が素数となるようなn をすべて求めよ。 練習 3 108 [(2)類 同志社大] (2) ,g,rp <g <r である素数とする。 等式r=g² -p を満たすか, 4,rの 組 (p,q,r) をすべて求めよ。 素数の正の約数は1とか 自分自身) だけである このことが問題解決のカギとなる。 なお, 素数は2以上 (すなわち正) の整数である。 これが素数となるには, n +6>0と!より,-4, (1) n²+2n−24=(n-4)(n+6) n+6のどちらかが1となる必要がある。 ここで,n-4とn+6の大小関係に注目する と、おのずとn-4=1に決まる。 (2)等式を変形すると (g+p) (g-p=r p>g-p>0,r は素数であることに注 目すると g-p=1 ここで,g, p はその差が奇数となるから, 一方が奇数で,他方が偶数である。 ここで, 「偶数の素数は2だけ である」という性質を利用すると、かの値が2に決まる。 CHART 素数 正の約数は1とその数だけ 偶数の素数は2だけ 指針 解答 (1) n²+2n−24=(n-4)(n+6) nは自然数であるから n +6>0 n²+2n−24が素数であるとき, ① から n-4=1 ゆえに n=5 よって このとき n²+2n−24=(5-4)(5+6)=11 これは素数であるから, 適する。 したがって n=5 (2) r=q²-p²t²5 (q+p)(q-p)=r 0 <p <g <rであるから 0 <g-p <g+p ①が素数であるから, ② より gtp=r, g-p=1 g-p=1 (奇数)であるから, g, かは偶奇が異なる。 更に, p<g であるからp=2 よってg=3 ゆえに r=3+2=5 したがって (p, q, r)=(2, 3, 5) POINT ① また n-4<n+6 n-4>0 2005 ·· (*) H 5+2=3 奇 偶偶 = まず, 因数分解。 (*) n-4=1が満たされて もn+6=(合成数)となって しまっては不適となる。 その ため。n²+2n−24 が素数と なることを確認している [n+6=5+6=11 (素数) の 確認だけでも十分である ] 。 素数は2以上の整数。 g, かのどちらか一方は 2 となる。 2 整数の和(または差)が偶数2整数の偶奇は一致する 2 整数の和 (または差)が奇数2整数の偶合は異なる (1)は自然数とする。 次の式の値が素数となるようなをすべて求めよ (ア) n²+6n-27

回答募集中 回答数: 0
数学 高校生

108.2 記述に問題ないですか? また、解答はなぜ0<p<q<rと書いているのですか? 素数の中で最小は2なので2≦pと言えないですか? (なので自身の記述では2≦p<q<rと書いています。)

474 00000 基本例題108 素数の問題 (1) nは自然数とする。 n2+2n- 24 が素数となるようなn をすべて求めよ。 練習 3 108 [(2)類 同志社大] (2) ,g,rp <g <r である素数とする。 等式r=g² -p を満たすか, 4,rの 組 (p,q,r) をすべて求めよ。 素数の正の約数は1とか 自分自身) だけである このことが問題解決のカギとなる。 なお, 素数は2以上 (すなわち正) の整数である。 これが素数となるには, n +6>0と!より,-4, (1) n²+2n−24=(n-4)(n+6) n+6のどちらかが1となる必要がある。 ここで,n-4とn+6の大小関係に注目する と、おのずとn-4=1に決まる。 (2)等式を変形すると (g+p) (g-p=r p>g-p>0,r は素数であることに注 目すると g-p=1 ここで,g, p はその差が奇数となるから, 一方が奇数で,他方が偶数である。 ここで, 「偶数の素数は2だけ である」という性質を利用すると、かの値が2に決まる。 CHART 素数 正の約数は1とその数だけ 偶数の素数は2だけ 指針 解答 (1) n²+2n−24=(n-4)(n+6) nは自然数であるから n +6>0 n²+2n−24が素数であるとき, ① から n-4=1 ゆえに n=5 よって このとき n²+2n−24=(5-4)(5+6)=11 これは素数であるから, 適する。 したがって n=5 (2) r=q²-p²t²5 (q+p)(q-p)=r 0 <p <g <rであるから 0 <g-p <g+p ①が素数であるから, ② より gtp=r, g-p=1 g-p=1 (奇数)であるから, g, かは偶奇が異なる。 更に, p<g であるからp=2 よってg=3 ゆえに r=3+2=5 したがって (p, q, r)=(2, 3, 5) POINT ① また n-4<n+6 n-4>0 2005 ·· (*) H 5+2=3 奇 偶偶 = まず, 因数分解。 (*) n-4=1が満たされて もn+6=(合成数)となって しまっては不適となる。 その ため。n²+2n−24 が素数と なることを確認している [n+6=5+6=11 (素数) の 確認だけでも十分である ] 。 素数は2以上の整数。 g, かのどちらか一方は 2 となる。 2 整数の和(または差)が偶数2整数の偶奇は一致する 2 整数の和 (または差)が奇数2整数の偶合は異なる (1)は自然数とする。 次の式の値が素数となるようなをすべて求めよ (ア) n²+6n-27

回答募集中 回答数: 0