数学
高校生

もう少し詳しく解説して欲しいです
1行目からよく分かっていません……
お願いします🙇‍♀️
ちなみに、青チャートP523の例題92です

るとき、 ak 既約分数の和 重要 例題 92 pは素数,m,n は正の整数でm<nとする。mとnの間にあって, pを分母と 00000 する既約分数の総和を求めよ。 ●それ以上約分できない分数 既約分数の和→ 全体の和 から 整数の和を除くという方針で求める。 ▽ まず, 具体的な値で考えてみよう。 例えば,2と5の間にあって3を分母とする分数は 7 8 9 10 11 12 13 14 3' 3'3 3 3' 3 3' 3 (*) であり,既約分数の和は(*) の和から3と4を引くことで求められる。 このことを一般化すればよい。 解答 9 Þ まずg を自然数として,m<<nを満たす を求める。 pm<g<pnであるから g_pm+1 よって g=pm+1,pm+2,.., pn-1 p D' これらの和をSとすると S₁= pm+2 p pn-pm-1 (m+n) 2 (pn−1)−(pm+1)+1(pm+1 + pn=1) 2 ⑩のうちが整数となるものは p _=m+1, m+2, これらの和を2 とすると S2= ………,n-1 pn-1 p (n-1)-(m+1)+1{(m+1)+(n-1)} -1/12/(m+n)(n-m)(b-1) 2 n-m-1(m+n) ゆえに、求める総和をSとすると, SS-S2 であるから S= n-m-1(m+n) pn-pm-1(m+n)-カー 2 -(m+n){(n−m)p−(n−m)} [同志社大] (*)は等差数列であり、3と4は 2と5の間にある整数である。 2 基本89.90 「mとnの間」であるから, 両端のとnは含まない。 pm+1 ① <初項 公差 1/1 p 等差数列。 45₁ = n(a+1) mとnの間にある整数。 ◄ Sn=½n(a+1) (全体の和) (整数の和) 523 3章 12 等差数列
等差数列 既約分数

回答

疑問は解決しましたか?