学年

教科

質問の種類

数学 高校生

73 コがわかりません。問題文のa.b.c.0の0はf(0)の時なのか、単に普通の0の時なのか教えていただきたいです🙇‍♀️また、コの求め方が解説を読んでもわからなかったので教えて欲しいです🙇‍♀️ どなたかすみませんがよろしくお願いします🙇‍♀️

73 Clax+bcx+axtacx+ahx+abc=x3-(a+b+c)x+cal+Ac+ca)x-h 難易度 ★★★ 目標解答時間 12 分 SELECT 90 a,b,cはa<b<c を満たす実数とし、3次関数f(x)=(x-a)(x-b)(x-c) がある。 また,p=a+b+c, q=ab+bc+ca, r=abc とおく。 (xa)(xb) (xc)を展開することにより、f(x)をg, rを用いて表すと SELECT 60 f(x)=x となる。 + アx 10qx ウr f(x)=6x²-2x+ D= (-20)²-4.6.& = 4p² - 248 ウ | の解答群(同じものを繰り返し選んでもよい。) f(x)=3x²+2pxc+90=(2P)2-413.2=4P2-129=4(P2-38) y=f(x)のグラフとx軸が異なる3点で交わるので, f(x) 極値をもつ。 2次方程式f'(x) = 0 の判別式をDとすると, D= f(x) が極値をもつようなgの値の範囲は, g 4ペー才6)より,カ=0のとき 0 10 である。 -248 ]の解答群 P=0のとき-128>&<o < ≤ (2) === ③ M > f(x)は極値をもつので、2次方程式(x)=0は、異なる2つの実数解をもつ!! 以下, gヵ< 0 とする。 (1)p>0,r> 0 の場合を考える。 て 2次方程式 f'(x)=0の二つの実数解をα, β (α <β) とすると, α+β, αβ の正負に一 解と係数 である。 キ 1の解答群 textbf(x)=3x2+2px+a+b=,c= 3 P>0.長くだから、X+20.o ⑩ α+B>0,aB0 ① a+B>0,α < 0 ② α+β < 0, aβ > 0 ③ α+β < 0, aβ < 0 また, α, β, 0の大小関係について ク が成り立つ。 BCDより、卵のが負になるとしい はどちらかとなり、もう片方が負 がくるより、びの声が小さいため、 ク の解答群 ⑩ a <B<0 ①a<0</ ② 0<a<B さらに,f(0) ケ 10 であることから, a, b, c, 0 の大小関係は ケ ]の解答群 f(0)-rrioより、よって、f(0) <0 正 < ① ② コ の解答群 ⑩ 0<a<b<c ② a<b>0<e ① a<0<b<c ③ a<b<c<0 114 コ である。

解決済み 回答数: 1