学年

教科

質問の種類

数学 高校生

(2)の問題なんですが、3枚目の自分で解いた解答のやり方が解説にのっていないので、3枚目の私の解答はどこから間違っているか教えてくださるとありがたいです。宜しくお願いいたします🙇

B1-68 (86) 第1章 数 列 例 B1.41 隣接3項間の漸化式(1) 考え方 次のように定義される数列{an} の一般項 am を求めよ。 (1) a=1, a2=2, an 2-2an+1-150=0 (2) a1=3, a2=5, an+2-30m+1+2a=0 (A) 特性方程式の解α, β が α β となる場合 (p. B1-67) である. (1) An+2-2+1-150=0.・・・ ① が ax +2aaμ+1=βan+1 aan) .....② たとする. ②より, an+2-(a+β)an++αβam= 0 |a=5 [α = -3 これより, α+β=2, aβ=-15 だから, lβ=5 または \B=-3 よって、②より 解答 とも Jax+2+3am+1=5 (an+1+3a) lan+2-5an+1=-3(an+1-5am) これより,一般項 α を求めればよい. (2)(A) aβにおいて,とくに α=1 となる特別な場合である。 つまり, an+2-3a+1+2a=0 は, an+2-An+1=B(An+1-an) となり, 数列{ant-am} は {an} の階差数列である。 mi (1)と同様に解くこともできるが,ここでは階差数列の 考え方を使って解いてみよう. ~20x150=0 (1) authen より となる. ......① an+2+3an+1=5 (an+1+3an) lan+2-50+1=-3 (a+1-5a) ②より, 数列 {am+1+3am} は, ③ {a} の階 {anta ① より,-2F wwww (x+3)(x-5)= よって, x=-1 α=-3,β=5 α=5,β=-3 {an+1+3a 初項 a2+3a1=2+3・1=5 公比 5 の等比数列であるから, an+1+3a=5・5"'=5" …④ a2+3a」(n=10) ③より, 数列 {an+1-5am} は, 初項 a2-5a=2-5・1=-3 公比3 の等比数列であるから, a,+1-5a= (-3)(-3)"'=(-3)"...... ⑤ ④ ⑤ より 3a-(-5am)=5"-(-3)" 8a=5"-(-3)" ④ ⑤から 去する. よって、 求める一般項 α は, _5"-(-3)" an= 8

解決済み 回答数: 1
数学 高校生

この問題なんですが、2枚目の動画授業と似ている問題だったので参考に解いていたのですが、一枚目だと2log2anをbnとおいている辺りから進めません!2枚目のやり方の方が自分にはあっているなと感じたのでそっちのやり方で進めたいのですが、一枚目の問題になるとできなくなってしまい... 続きを読む

3 漸化式と数学的帰納法 (77) B1 題 B1.35 漸化式 antipan" たぶん次数相型 a=2, +1=4am で定義される数列{an} の一般項 am を求めよ. **** え方 漸化式がα+1 や ami などの累乗の場合や, に √ がついている場合, 10月のよう な積の場合は,両辺の対数をとるとうまくいくことが多い。 ここでは,a の係数4(=22) に着目して, 底が2である対数を両辺にとると, log2an+1=log2(4a)=log24+logza3 より 210g2a+1=2+310gzan ここで, log2am=b" とおくと, 26+1=36+2となり、例題 B1.32 の形の漸化式となる. a=2>0, an+1=4amより, すべての自然数nに対して an>0 an+12=4am について 底2で両辺の対数をとると, logzan+1=10g24a73 m 210gz4+1=log24+310gzan より oga=b とおくと, 210gza+1=310gza,+2 26+1=36+2 したがって,bn+1= 本来マイナス 3 20m+1 より、これを変形すると 3 に ここで, b1+2=10gza1+2=10g22+2=3 下の注〉 参照 漸化式の形と初値 すべての自然につい amであると分か bn+1+2=2(b+2) ……① 3 ①とb+2=3 より, 数列{b,+2} は,初項 3.公比の 特性方程式 3 α=24+1を解くと α-2 21egant 3/ 等比数列だから,一般項は, bn+2=3 3 3" すなわち, bn b-3-2-3-20 2= -x-2 よっち bn=10gzan=- 3"-2" 2n-1 3"-2" X=-2 より an-2 2-1 Ocus 漸化式 an+1=pan" は両辺の対数をとる -注> 「α」=2, am+12=4a73 のとき, すべての自然数について am>0」について a2=4a=4.23 仮に a2= -4 bu= 3" 244-2 よって, 20 3" 2 2.244 2 34-2" 21 (1) 34-2-244 21-7 える (

解決済み 回答数: 1
数学 高校生

この問題の解答の途中のbnへの置き換えは必須ですか?また必須じゃなければそれ以降のやり方を教えて欲しいです

答 =l, a1=3an+4nによって定められる数列{an}の一般項を求めよ。 00000 基本 34 p.464 基本例題 34 の漸化式 an+1=pan+g で、g が定数ではなく、nの1次式となっ ている。このような場合は, n を消去するために 階差数列の利用を考える。 → 漸化式のn をn+1とおき, an+2 についての関係式を作る。これともとの漸化式 との差をとり、階差数列{an+1 - an} についての漸化式を処理する。 また、検討のように,等比数列の形に変形する方法もある。 CHART 漸化式an+1=pan+(nの1次式) 階差数列の利用 an+1=3an+4n ① とすると an+2=3an+1+4(n+1) ② ①から ****** ② an+2-an+1=3(an+1-an)+4 an+1-an=bn とおくと これを変形すると また bn+1=36+4 bn+1+2=3(bn+2) b1+2=az-a1+2=7-1+2=8 よって, 数列{bn+2}は初項8, 公比3の等比数列で bm+2=83-1 すなわち 6=831-2... (*) n≧2のとき n-1 an a1+ (8.3k-1-2)=1+ k=1 .. 8(3n-1-1) 3-1 -2(n-1) ③ =4・3n-1-2n-1・ n=1のとき 4・3°-2・1-1=1= a=1であるから,③はn=1のときも成り立つ。 したがって an=4・31-2n-1 ( <①のnn+1を代入す 差を作り, n を消去する。 <{6}は{az}の階差数列。 α=3α+4から α=-2 <a2=3a+4・1=7 In≧2のとき n-1 an=a+bk k=1 初項は特別扱い (*) を導いた後, an+1-an=8•3"-1-2に①を代入してan を求めてもよい。

解決済み 回答数: 1
数学 高校生

この問題なんですが、丸で囲んだ3と2はどこからきた数字かが分かりません!誰か解説してくださると嬉しいです。宜しくお願いいたします🙇

3 漸化式と数学的帰納法 (73) B 例題 B1.33 漸化式 an+1=pan+f(n) (p≠1) **** a1=3, am+1=3am +2n+3 で定義される数列{a} の一般項 α を求めよ. 考え方 ■1漸化式 +1=3a+2n+3 において,見をしつ先に進めてα+2とQs+)に関す る関係式を作り,差をとってに関する漸化式を導く。 wwwwwwwwwwwwwwwwww 2αに加える(または引く)nの1次式pn+g を決定することにより, {an+pn+g} が等比数列になるようにする. 解答 -1 an+1=3a+2n+3 ante= 30+1+2(n+1)+3 ......② ② ① より an+2an+1=3(an+1-am)+2 buvandy とおくと, ~~~ b+1=36+2, b=a-a=3a,+2+3-a=11 り bn+1+1=3(b+1), b1+1=12 したがって, 数列{bm+1}は初項 12. 公比3の等比数列 だから, bm+1=12・3" =4・3" b=4.3"-1 -1 ②は①のnn+1 を代入したもの 差を作り, nを消去 する. ①より, a2=3a,+2+3=14 α=3α+2 より α=-1 12・3"=4・3・3"-1 =4.3" 2のとき -1 an a+b=3+Σ(4·3-1)=3+1 12(3"-1-1) --(n-1) k=1 k=1 3-1 =6.3" '-n-2=2・3"-n-2 n=1のとき,a=2・3-1-2=3 より成り立つ. 6.3" =2・3・3"-1 =2.3" よって, an=2.3"-n-2 どこかち? 解答 -2pg を定数とし, au+1+p(n+1)+q=3an+pn+g) とおくと an+1=3an+2pn+2g-p うちの もとの漸化式と比較して, 2p=2, 2g-p=3より,p=1,g=2 したがって, att(n+1)+2=3(a+n+2), a1+1+2=6 いい!!より、数列{an+nは初項 6. 公比3の等比数列 よって, an+n+2=6・3" '=23" より. Focus 練習 どこから n=1のときを確認 an+1+pn+p+g =3a+3pn+3g よ り, an+1=3a+2p2 +2q- an=2.3"-n-2a1=3 an+1=pan+f(n) (f(n) はnの1次式) 差を作り, n を消去して階差数列を利用して考える 注〉 例題 B1.32 (p.B1-53) のように例題 B1.33 でも特性方程式を使うと, α=3a+2n+3 3 りα=-n- となる。これより、au+2=3(mjn+12) 順番になっていない と変形できるが, 等比数列を表していないので,このことを用いることはできない 注意しよう. (p. B1-56 解説参照) 1=2+1=20-2n+1 (n=1, 2, 3, ...) によって定められる数列{a} B1.33 ついて ** (1) by=a-(an+β) とおいて, 数列 {bm} が等比数列になるように定数α. の値を定めよ. (2) 一般項 α を求めよ. (滋賀

解決済み 回答数: 1
数学 高校生

最後の「よって」からの計算の977という数字が、489を2倍して1引いたものだということは分かったのですが、何故2倍して1引くのかが分かりません!誰か解説してくださると嬉しいです。宜しくお願いいたします🙇

8 (66) 第1章 数 列 Think 例題 B1.30 群数列(2) **** 2の累乗を分母とする既約分数を次のように並べた数列について、 1 13 5 7 1 3 5 16' 1 3 2'4'4'8'8'8'8' 16' 16' (1) 分母が2" となっている項の和を求めよ. (2)初項から第1000項までの和を求めよ. 15 1 16'32' * ← p. 手 考え方 分数の数列は、分母と分子に着目する. この数列では同じ分母で1つにまとめる (分母) 2,4,4,8,8,8,8,16,1616, 16, 16, 16, 16, 16, 1個 2個 4個 8個 となっている.つまり, 分母が同じ数である項をひとつの群と考えると, 第2群に 分母が2" の分数が2個あることがわかる.さらに,分子に着目すると, ..... (分子)1|13|1,3,5,713,5,7,9,11, 13, 15………… となっている。 10 解答 (1) 分母が 2 である分数をまとめて第ん群とする数 列を考えると, 1 1 3 1 3 5 7 1 3 5 15 1 24'48'8'8'816'16'16' 16 32 となり、分母が2" の分数は2個あり,分子は初 わけられている 等差数列の和 1. 公差2の等差数列になっているから,その和 は, Sn= n(ate) 2 を利用 1+3+5+…+(221-12-2 (2) 各群の項数は, 1, 2, 48, 16, ・・・・・・より 2" -=2n-2 分子 1+3+5+...... 2" S 第n群までの項数の和は、 1 (2"-1) 2-1 =2"-16 2°_1=511,2-1=1023より 第1000項は第 10群の第489項なので、求める和は第9群までの 和と第10群の第489項までの和となる. k=1 9 よって, 2-2 1 3 '+ + 210 20+......+. 977 SOI+ 1 (29- -1) 2 1 - + 2-1 210 2 2 -489-(1+977) 511 4892 500753 + 2 1024 1024 + (2・2"-1_ 2" (1+2.2-1-1) =22n-2 2 第1000項が第何群に っているかをまず調べる 9 1/2. 公園 22-2は初項 2の等比数列の初項が 第9項までの和 1+3+ ...... +977は, 初項 1,末項 977, 頭数 489 等差数列の Focus 分数の群数列は分母,分子に着目して見抜く 1/6 習 [30] * 数列 (1) 2-3 1-3 '2'3'3 1-2 2-2 +1136- 13 は第何頭か . 3-3 1 3'4 23 4 1 4'4'4'5 5/5 (2) 初項から第1000項までの和 ………について

解決済み 回答数: 1
数学 高校生

書き込んである①②のことが分かりません!誰か解説してくださると嬉しいです。宜しくお願いいたします🙇

B1-46 (64) 第1章 数 列 例題 B1.29 群数列(1) *** ・・・・となるよ 1から順に奇数を並べて,下のように1個 3個 5個 ...... 2 うに群に分け,順に第1群, 第2群, ・・・・・・とする. 13 5 7 9 11 13 15 17 | 19 (1) 第n群の最初の数と最後の数を求めよ. (2)第n群に含まれる数の総和を求めよ. (3)207は第何群の何番目の項か. [考え方] 各群にいくつずつ項が入っているか考える. このように、数列をある規則によっていくつかの群に分けているものを,群数列と 群 項数 数列 1 1 1 2 3 3,5,7 3 5 項数の和 1 1+3 1+3+5 n-1 n 9, 11, 13, 15, 17 2(n-1)-1, O-2, O 2n-1 O+2,..... 1+3+5+....+{2(n-1)-1} 1+3+5++{2(n-1)-1}+(2n-1) 初項 1.公差2の等差数列{az},すなわち,a,=2n-1 が群にわけられている。 群数列のポイント (1)第群の1つ前の群(第 (n-1) 群)までに頂数がいくつあるか考える。 (2)第n群だけを1つの数列として考え, 初項, 項数などを求める. (3) まずは 207 が第何群に属するか考える. 解答) (1) 第群には (2k-1) 個の数が入っているので,第1 群から第 (n-1) 群 (n≧2) までに入る数の個数は, ①なぜい群じゃなくて、 n1 なのか ②この+1はどこから きたのか、 1+3+5+....+{2(n-1) -1} =(n-1){1+(2n-3)} =(n-1)^ ...... ① したがって,第n 群の最初の数は, (n-1)+1=n-2n+2 (番目)の数である. 第n群の最初の数は -2n+2 番目の奇数であり, その数は, 2(n-2n+2)-1=2m²-4n+3 これは n=1のときも成り立つ. 次に,第n群の最後の数を考える。 第1群・・・1個 第2群・・・3個 第3群・・・5個 第n群... (2-1 2(n-1)-1=2 より初項1 2-3 項数 - 等差数列の和 もとの数列{2m- の代わりに i maps//WW FC 第1群から第n群までに入る個数を考えて①より, 2番目の奇数であるから,その数は, 2n2-1 よって、第n群の最初の数は2m²-4n+3, 最後の数は22-1 (2)第群は,(1)より 初項2m²-4n+3.末項 2²-1. 項数 2n-1 の等差数列だから,その和は、 wwwwwwwwwwwwwwww 1/12 (2n-1){(2m²-4n+3)+(2n-1)} (2n-1)(4n²-4n+2) =(2n-1)(2n²-2n+1) 22n+2とす ①と同様にして られるが、①の の代わりに とよい 初項 α,末項 nの等差数列の S=(a+

解決済み 回答数: 2
数学 高校生

三枚目のシグマの計算が分かりません!あと、この3つの問題全てなんですが、格子点の数を求める際、+1しているのが何故かが分かりません!誰か解説してくださると嬉しいです。宜しくお願いいたします🙇

B1-42 (60) 第1章 数 列 B1.28 格子点の個数 **** 自然とするとき、次の条件を満たす整数の組 (x, y) はいくつあ (1) ps/y/≤2p, ps/x/≤2p か、 (2)x+2y≦2p.y≧0x20 (3) 0≤ y ≤500, 0≤x≤√√ 考え方 座標がすべて整数である点を梢子点という。 (1)(2) 具体的な数を入れて考えてみるとよい。 たとえば、(2)では, 0 (学習院大・改 (2,3) 2 x 34p=1 p=2 p=3 30 2 3 10 x O 4 O 0 となり,p=1のとき, 1+3=4 p=2 のとき, 1+3+5=9 p=3 のとき, 1+3+5+7=16 p=4 のとき, 1+3+5+7+9=25 となっている。 p=4 一般に, 直線 y=k (k=p.p-1, ......, 0) 上には, それぞれ 1, 3, 5, (2p+1) 個の格子点が並んでいる。 (3) 0≤x≤√y. (0≤)x²≤y 0≤y≤500, 0≤x≤ y ≤√500=10/5=22.4 より 右の図のようになる。 y 1500 Jx ここでは,与えられた条件を 変形し x²≤y≤500 0 x=k上にある格子点の個数を考える. (2) y YA 2p p+1 p -2p-p O p: 2px p+1 Fo 解答 (1) 領域は、右の図のように、 1辺の長さの正方形4つ分 である。 x=p上にある格子点の個 数は, y=p,p+1,........ 2p, KAEROP-p-1, -2p の{2p-(p-1)}×2=2(p+1) (個) 同様にして, x=p.......... 2p,p. 上の格子点の個数は,それぞれ, x=p上の格子点の 2(p+1) 一方,xp, -2p -2 練習 2(p+1) 個 線の数は 2 (p+1)* B1.1 **

解決済み 回答数: 1