数学
高校生
解決済み

書き込んである①②のことが分かりません!誰か解説してくださると嬉しいです。宜しくお願いいたします🙇

B1-46 (64) 第1章 数 列 例題 B1.29 群数列(1) *** ・・・・となるよ 1から順に奇数を並べて,下のように1個 3個 5個 ...... 2 うに群に分け,順に第1群, 第2群, ・・・・・・とする. 13 5 7 9 11 13 15 17 | 19 (1) 第n群の最初の数と最後の数を求めよ. (2)第n群に含まれる数の総和を求めよ. (3)207は第何群の何番目の項か. [考え方] 各群にいくつずつ項が入っているか考える. このように、数列をある規則によっていくつかの群に分けているものを,群数列と 群 項数 数列 1 1 1 2 3 3,5,7 3 5 項数の和 1 1+3 1+3+5 n-1 n 9, 11, 13, 15, 17 2(n-1)-1, O-2, O 2n-1 O+2,..... 1+3+5+....+{2(n-1)-1} 1+3+5++{2(n-1)-1}+(2n-1) 初項 1.公差2の等差数列{az},すなわち,a,=2n-1 が群にわけられている。 群数列のポイント (1)第群の1つ前の群(第 (n-1) 群)までに頂数がいくつあるか考える。 (2)第n群だけを1つの数列として考え, 初項, 項数などを求める. (3) まずは 207 が第何群に属するか考える. 解答) (1) 第群には (2k-1) 個の数が入っているので,第1 群から第 (n-1) 群 (n≧2) までに入る数の個数は, ①なぜい群じゃなくて、 n1 なのか ②この+1はどこから きたのか、 1+3+5+....+{2(n-1) -1} =(n-1){1+(2n-3)} =(n-1)^ ...... ① したがって,第n 群の最初の数は, (n-1)+1=n-2n+2 (番目)の数である. 第n群の最初の数は -2n+2 番目の奇数であり, その数は, 2(n-2n+2)-1=2m²-4n+3 これは n=1のときも成り立つ. 次に,第n群の最後の数を考える。 第1群・・・1個 第2群・・・3個 第3群・・・5個 第n群... (2-1 2(n-1)-1=2 より初項1 2-3 項数 - 等差数列の和 もとの数列{2m- の代わりに i maps//WW FC 第1群から第n群までに入る個数を考えて①より, 2番目の奇数であるから,その数は, 2n2-1 よって、第n群の最初の数は2m²-4n+3, 最後の数は22-1 (2)第群は,(1)より 初項2m²-4n+3.末項 2²-1. 項数 2n-1 の等差数列だから,その和は、 wwwwwwwwwwwwwwww 1/12 (2n-1){(2m²-4n+3)+(2n-1)} (2n-1)(4n²-4n+2) =(2n-1)(2n²-2n+1) 22n+2とす ①と同様にして られるが、①の の代わりに とよい 初項 α,末項 nの等差数列の S=(a+
(1)第群の1つ前の群(第 (n-1) 群)までに項数がいくつあるか考 (2)第n群だけを1つの数列として考え,初項,項数などを求める (3) まずは 207 が第何群に属するか考える. 解答 (1) 第群には (2k-1) 個の数が入っているので,第1 群から第 (n-1) 群 (n≧2) までに入る数の個数は, ①なぜい群じゃなくて、 nなのか ②この+1はどこから きたのか、 1+3+5+......+{2(n-1)-1} =1/2(n-1){1+(2n-3)} =(n-1)2 ....① したがって, 第n群の最初の数は, (n-1)+1=n2-2+2 (番目)の数である. 第n群の最初の数は n-2n+2番目の奇数であり、 その数は, 2(n-2n+2)-1=2n²-4n+3 これは n=1のときも成り立つ. 次に,第 n群の最後の数を考える.

回答

回答

おはようございます。
1は考え方の問題で、問題は、n群の最初の数を聞いているので、n-1群(n群の一個前)の一番後ろの数を考えて、プラス1すれば、n群の一番最初の数がでるよね
ということを言ってるからです。考え方ですね
2は、1が分かれば分かるのですが、
1/2n(n+1)のシグマの公式を使っていて、nの部分をn-1に変えただけです。

moon

理解出来ました!ありがとうございます!

この回答にコメントする
疑問は解決しましたか?