学年

教科

質問の種類

数学 高校生

(2)の[2]がなぜ解なしになるのかわかりません。

基本 例題 31 文字係数の不等式の導立 αを定数とする。 次の不等式を解け。 (1) ax+2>0 CHART & THINKING 00000 (2) ax-6>2x-3a+x 基本 29 文字係数の不等式 割る数の符号に注意 23 (1) 「ax +20 から ax-2 両辺を4で割ってx2」では誤り! αが正の数のときは上の解答でよいが、負の数のとき不等号の向きはどうなるだろうか? また,a=0 のときは両辺をαで割るということ自体ができない。 不等式 Ax>B を解くときは,A>0,A=0, A<0 で場合分けをする。(2)も同様。 解答 (1) ax+2>0 から ax>-2 [1] α>0 のとき x>- 2 a 不 まず, Ax>B の形に。 次に,A>0,A=0, A<0 で場合分け。 [2] a=0 のとき,不等式 0x>-2 はすべての実数xa=0 のときは,不等式 に対して成り立つから,解はすべての実数。 2 [3] α < 0 のとき x<- a (2) ax-6>2x-3α から よって ax-2x>-3a +6 (a-2)x>-3(a-2) > に a=0 を代入して検討 する。 すべての実数x に対して 0·x=0 である。 [1] a-2>0 すなわち>2 のとき 両辺を正の数 α-2で割って x>-3 [2] α-2=0 すなわち α=2のとき 不等式 0x>-30 には解はない。 [3] α-2<0 すなわち a < 2 のとき 両辺を負の数 α-2で割って x <-3 α-2は正の数なので, 不等号の向きはそのまま。 の向 ← α-2は負の数なので, 不等号の向きは逆になる。 INFORMATION 不等式 Ax > B の解 B 不等号の向き [1] A >0 のとき x> A は変わらない 例 [2] A=0 のとき B≧0 ならば解はない 0.x>5 解はない B<0 ならば解はすべての実数 0•x>0 解はない [3] A<0 のとき x <- B 不等号の向き A が逆になる 注意 不等式が Ax≧B の場合は, A= 0 のとき 0.x> -5 ・・・ 解はすべて 「B>0」ならば解はない, 「B≦0」 ならば解はすべての実数となる。 ③ PRACTICE 31Ⓡ αを定数とする。 次の不等式を解け。 の実数 (1) ax-1>0 (2) x-2>2a-ax

解決済み 回答数: 1
数学 高校生

対数についての質問です。162の(2)です。青のマーカーを引いたa>b>1なら何故log a b>0 log b a>0となるのでしょうか?

6/15 2 対数と対数関数 325 例題 162 対数の計算 (2) **** (1)logio2a, logo3=b とするとき,次の値を a, b の式で表せ. (ア)10g105 (イ)10g316 (ウ)10g7524 2√7 (2)a>b>1,logab-loga=- 3 であるとき,logab + loga の 値を求めよ. 考え方 (1) 対数の性質や底の変換公式を使って, 与えられた式 を、底が10で, 真数が2か3か10の対数で表す. 10 (ア) 10g105=10g1010g1010-10g102=1-a <常用対数> log 10 N 底が10 解答 (1) 10 5= 2 (イ) 10g316= E.col (ウ)10g7524= log103 logo24_logio (233) log103 b 底を10にそろえる. log1075 10g10 (3.52) logo16_logi02_410gio2_4a log103 _log1023 +10g103_310g102+10g103 10g 103+10g1052 10g103+210gi05 3a+b 3a+b b+2(1-a) 2-2a+b (2) a>b>1 であるから, logab>0 10ga>0より 10gab+log.a>0 (logab+loga) 2 =(logab-logia)²+4logab loga ......① (ア)より, 10g105=1-a 第5章 Xagol= ao (x+y)²=(x-y)"+4xy logaa 1 ここで, loga= であるから, ①に代入すると, logablogab (logab+1oga) = (logab-loga)+410gab. logab =(-267)+4=64 8 よって, 10gab +10ga>0より, logab+10ga=- 3 Focus 条件式の底が10であるから,底の変換公式により底を10にする 注》例題 162 (1)ア)では、10g105の5を2,3, 10 で表すことを考えるのだが、このようなとき は、5=- 5=120 のように積か商で表すように工夫しよう 52+3 としても, logio (2+3) これ以上,変形することはできない. Rigol 練習 (1) 10g102=a,log103=6 とするとき,次の値を a, b の式で表せ. |162| *** (ア)10g34 (イ)10g1215 1 (ウ)10g105.4+210g10 1.5 (2)2つの正の数x, yが以下の2条件を満たすとき (10gzx) + (10gzy) の値 を求めよ. 1 (1)(10g)(103)=8 p.347 12

解決済み 回答数: 1
数学 高校生

ほぼ分からないので…わかる問題あれば、1問でも解説頂けるとありがたいです…🥲🥲

1 次の問いに答えよ。 (1) 392の正の数は何個あるか 2 392の正の約数の総和を求めよ。 (1) 12 (2) 855 8. 男子8人, 女子6人の中から4人の委員を選ぶとき、次のような選び方は何通りあるか。 (1) すべての選び方 (2) 男子2人、女子2人を選ぶ。 (3) 女子から少なくとも1人選ぶ。 (4) 男子、女子から少なくとも1人ずつ選ぶ。 (5) 特定の2人A. Bがともに選ばれる。 (6) Aは選ばれ,Bは選ばれない。 2. 大文字 X, Y および小文字 x, y, z, w が書かれたカードが1枚ずつ、合計6枚ある。 これらを1列に並べるとき、 以下の問いに答えよ。 (1) 1001 通り (2) 420通り (3) 931 通り (1) 両端が小文字である並べ方は何通りか。 (2) 小文字の書かれたカード4枚が一続きに並ぶような並び方は何通りか。 (3) 大文字 2枚が隣り合わない並べ方は何通りか。 (4) 916 (5) 66通り (6) 220通り (4) よりzが前よりyが前, yよりxが前にある並べ方は何通りか。 (1) 288通り (2) 144 通り (3) 480通り (4) 30通り 9. 右図のように、南北に7本, 東西に6本の道がある。 次の問いに答えよ。 北 P 3. 5個の数字 0 1 2 3 4から異なる 4個を使って4桁の整数を作るとき、 次のような整数は何個あるか。 (1)0地点を出発し, P地点へ最短距離で行く道順 は何通りあるか。 LA 西 東 (1) 整数 (2) 奇数 (3) 偶数 (20地点を出発し, A地点を通り, P地点へ最短 距離で行く道順は何通りあるか。 (4) 10の倍数 (3) 0地点を出発し, A 地点とB地点の両方を通 り P地点へ最短距離で行く道順は何通りある か。なお,同じ道を何度通ってもよいとする。 B 0 南 (1) 6 (2) 3個 (3) 60個 (4) 24個 4. a, b, c,d,eの5文字を並べたものを, アルファベット順に, 1番目 abcde, 2番目 abced 120 番目 edcba と番号を付ける。 (1) cbeda は何番目か. (1) 462通り (2) 150通り (3) 1350通り (2) 40番目は何か. (1) 60 (2) bdcea 5. 円卓の周りに男子3名, 女子3名を並べる。 次の問いに答えよ。 (1) 並べ方は全部で何通りあるか。 (2) 男子の3名。 女子の3名がかたまって並ぶような並べ方は何通りあるか。 (3) 男女交互に並ぶような並べ方は何通りあるか 10. 次の計算式を使って解くような問題をひとつ作りなさい。 8C2X6C3=560 (通り) (1) 120通り (2) 36通り (3) 12通り 11. 6.(1) 8人を, 2つの部屋 A, B に入れる方法は何通りあるか。 ただし、1人も入らない部屋があってもよいものとする。 (2) 8人を2つのグループA, B に分ける方法は何通りあるか。 (3)8人を2つのグループに分ける方法は何通りあるか。 ※以降の問題は考え方・解答を記述すること。 1 aaabbed の7文字から4文字を取り出す。 (1) 選び方は何通りあるか。 (2) 1列に並べるときの並べ方は何通りあるか。 [1] 同じ文字を3個含む場合 aaa で, 残り1個は 3通り その並びは、 (通り) [2] 同じ文字を2個ずつ含む場合 aabb で (1) 256通り (2) 254 (3) 127 通り その並びは、 4! 2121 (通り) [3] 同じ文字2個を1組だけ含む場合 aa または bb で、 残り2個は [C-3 (通り) 7. SUUGAKUの7文字を1列に並べるとき、 次の並べ方は何通りあるか。 (1) 1列に並べる。 (2) GAUSU という文字列を含むように並べる。 (3) Uはすべて奇数番目にくるように並べる。 (4) Uは2つ以上隣り合わないように並べる。 4! その並びは、 (通り) 2! [4] 4個とも異なる文字の場合 abed で ①通り その並びは、 41 (通り) したがって、 組合せの総数は 3+1+3×2+1=11 (1) 840 通り (2) 6.通り (3) 96通り (4) 240通り 順列の総数は -x3+ -x3x2+4!x1=114

解決済み 回答数: 1