数学
高校生
解決済み

(2)の[2]がなぜ解なしになるのかわかりません。

基本 例題 31 文字係数の不等式の導立 αを定数とする。 次の不等式を解け。 (1) ax+2>0 CHART & THINKING 00000 (2) ax-6>2x-3a+x 基本 29 文字係数の不等式 割る数の符号に注意 23 (1) 「ax +20 から ax-2 両辺を4で割ってx2」では誤り! αが正の数のときは上の解答でよいが、負の数のとき不等号の向きはどうなるだろうか? また,a=0 のときは両辺をαで割るということ自体ができない。 不等式 Ax>B を解くときは,A>0,A=0, A<0 で場合分けをする。(2)も同様。 解答 (1) ax+2>0 から ax>-2 [1] α>0 のとき x>- 2 a 不 まず, Ax>B の形に。 次に,A>0,A=0, A<0 で場合分け。 [2] a=0 のとき,不等式 0x>-2 はすべての実数xa=0 のときは,不等式 に対して成り立つから,解はすべての実数。 2 [3] α < 0 のとき x<- a (2) ax-6>2x-3α から よって ax-2x>-3a +6 (a-2)x>-3(a-2) > に a=0 を代入して検討 する。 すべての実数x に対して 0·x=0 である。 [1] a-2>0 すなわち>2 のとき 両辺を正の数 α-2で割って x>-3 [2] α-2=0 すなわち α=2のとき 不等式 0x>-30 には解はない。 [3] α-2<0 すなわち a < 2 のとき 両辺を負の数 α-2で割って x <-3 α-2は正の数なので, 不等号の向きはそのまま。 の向 ← α-2は負の数なので, 不等号の向きは逆になる。 INFORMATION 不等式 Ax > B の解 B 不等号の向き [1] A >0 のとき x> A は変わらない 例 [2] A=0 のとき B≧0 ならば解はない 0.x>5 解はない B<0 ならば解はすべての実数 0•x>0 解はない [3] A<0 のとき x <- B 不等号の向き A が逆になる 注意 不等式が Ax≧B の場合は, A= 0 のとき 0.x> -5 ・・・ 解はすべて 「B>0」ならば解はない, 「B≦0」 ならば解はすべての実数となる。 ③ PRACTICE 31Ⓡ αを定数とする。 次の不等式を解け。 の実数 (1) ax-1>0 (2) x-2>2a-ax

回答

✨ ベストアンサー ✨

xの不等式の解というのは、
その不等式を成り立たせるような
x(をすべて集めたもの)です

a=2のとき、不等式は0>0
この不等式は、xがなんであろうと成り立ちません
x=1のときも0>0は成り立たない
x=2のときも、x=0のときも、x=√3のときも、…

だから解なしです

ソル

ありがとうございました!

この回答にコメントする
疑問は解決しましたか?