学年

教科

質問の種類

数学 高校生

(2)(ハ)の「y=2が漸近線だから、y=-1/xをx軸方向にp、y軸方向に2だけ平行移動したもの」でなんでこうなるのか分からないので教えて欲しいです!!

基礎 基礎問 第 62 第3章 いろいろな関数 ■3 いろいろな関数 37 分数関数 次の問いに答えよ. y= gにおいて, r>0 ならば、 右上と左下の部分で, r<0 な x-p らば,右下と左上の部分になります。 (2)(イ)y= (6-1)=(1+0)-(10 ax+b x+c に3点の座標を代入して 63 2x+1 (1) y=-1 のグラフをかけ. (2) 分数関数y= ax+6 x+c ぞれ定めよ. (x-(+1) が次の各条件をみたすときのa,b,cをそれ (3点 (0,3) (2,1) (1, 2) を通るw)+9 (ロ)漸近線がx=2とy=-1 で, 点 (1, -5) を通る yy=2が漸近線で,点(-2, 3)を通り,平行移動すると 1 y=- と一致する. I b=3c, 2a-b-c+2=0,a+b-2c-2=0 よって, a=1,6=3,c=1 (口) 漸近線がx=2, y=-1 だから, 題意をみたす分数関数は y=-1とおける. 漸近線がわかってい (1, -5) を代入して,r=4 るので,このおき方 がベスト 4 ..y=-1+- -x+6 x-2 x-2 よって, a=-1,b=6,c=-2 -1 (ハ) y=2が漸近線だから,y=- をx軸方向に, y 軸方向に2だ I け平行移動したものが題意をみたす曲線. ⅡB ベク 48 <おき方を考える 第3章 y-2= よって、+2とおける. x-p ま (1) 分数関数のグラフをかくときは,y= 精 ax+b cx+d これが点(-2, 3) を通ることにより の形から, わり算 1 3= |によって y=- ygの形に変形しなければなりません. x-p +2 よって, p+2=1 したがって, p=-1 p+2 2x+1 (2)関数の係数を決定するときは、式をおくときに、条件を使っておくと, 使 う文字の数が少なくなり計算量を減らすことができます. それはこの形にすれば漸近線の方程式 = p, y = g がわかり、 すぐに ラフがかけるからです。 y= =1+1+2 :.y= x+1 よって, a=2,6=1,c=1 ② ポイント r 曲線 y= +αの漸近線はx=p とy=g 解答 x-p (1) _2x+1_2(x-1)+3 右図のようになる。ふれ よって, 漸近線はx=1, y=2 で, グラフは y= x-1 x-1 =2+ x-1 y=- =x-btqの形に 演習問題 37 次の問いに答えよ. -v=2 (1)y=- のグラフをかけ. x-1 注 分数関数のグラフは、漸近線で分けられ O 4つの領域のうち, 隣り合っていない2つの領域に存在します。 (2)y= 1 x-1 とy=-|x|+k のグラフが2個以上の共有点をも つようなんの値の範囲を求めよ. 0=2+2yとの交点10,-1) y=2+1-1 ③37 (1)g=21 よって D P

未解決 回答数: 1
数学 高校生

数2の質問です! 42の(2)の答えの丸を つけたところでなぜ +1 されるのかを 分かりやすく教えてほしいです!! よろしくおねがいします🙇🏻‍♀️՞

表す。 テーマ 17 (kの多項式) 標準 解答 この数列の第k項は よって、 求める和は 次の数列の初項から第n項までの和を求めよ。 1-3, 2.5, 3-7, 4.9, 考え方を用いて計算する。 そのために, まず, 第項をの式で表す。 1,2,3,4,・第項はん よって、与えられた数列の第k項は 第k項は2k+1 3,5,7,9, k(2k+1) k(2k+1) k(2k+1)=2 k² + k 1 =2. 6 -n(n+1)(2n+1)+ )+1/2(n+1) -1/13n(n+1){2(2n+1)+3) n(n+1) でくくる。 =1n(n+1)(An+5) □ 練習 41 [(1) 32, 62, 92, 122 次の数列の初項から第n項までの和を求めよ。 -3 (2) 1-2, 4-4, 7-6, 10.8, テーマ 18 2 (第k項が和の形) 2k 応用 次の数列の初項から第n項までの和を求めよ。 1+2, 1+2+4, 1+2+4+8, 考え方 まず、第k項をkの式で表す。 第1章 数列 112- 基本と演習テーマ 数学B 40(1) 23.74-1=37-11/12(71) (2)24-24-4-1=44^2=4(4-1) (3) (-2)-1-(1-(-2)-1) (= (1-(-2)-1) 41 (1) この数列の第項は よって、 求める和は 9k²-9k² (3k)29k2 =9. 6"(n+1X2n+1) 3 よって、 求める和は (3-1)-(3-21) 9(3" 23-1 (9-3-9)- -(3-+-2-9) 43 与えられた数列を (al その階差数列を する。 la a a a3 a as a a 10m) by ba ba ba bs be =ln(n+1)(2n+1) (2)この数列の第項は (3k-2)-2k=6k²-4k よって, 求める和は (6k2-4k)-62-41 k 4-1 A-1 =6 6.1m(n+1)2m+1)-4.12m(n+1) =n(n+1)(2n+1)-2n(n+1) =n(n+1){(2n+1)-2) =n(n+1)(2n-1) 42 (1) この数列の第項は 2+4+6++2k =2(1+2+3+ ...... +k) =2. kk +1)=kk+1 (1) 数列 (b) は 1,4,7, 10, これは公差が3の等差数列であるから bs=10+3=13, b=13+3= よって a6=as+bs=23+13=3E a=a6+bg=36+16=5 (2) 数列 (b)は 1, 2, 4, 8, .... これは公比が2の等比数列である bg=8.216. be 16-2=3 46=as+bs=19+16= よって α7=46+66=35+32= 44 数列 (b)は 3, 6, 12, 24, これは初項が73, 公比が 「2の等 から b="3.2"-1 第k項は 1+2+2+......+2k ←初項が 1. 公比が2の等比数列の和 解答 この数列の第k項は よって, 求める和は 1 (2k+1-1) 1+2+2+・+2= -=2k+1-1 2-1 ←項数はん+1 A-1 よって, 求める和は (2 +1-1) = 2 21-1 したがって、 kk+1)=k²+ k²+k k=1 =ln(n+1)(2n+1)+1n(n+1) k=1 k=1 1 n(n+1)(2n+1) +3) 4(2-1) 2-1 -n=2"+2-n-4 =1n(n+1)2n+4)、 6' 練習 42 次の数列の初項から第n項までの和を求めよ。 (1) 2,2+4, 2+4+6, 2+4+6+8, 12 1+3, 1+3+9, 1+3+9+27, ...... n(n+1)(n+2) (2)この数列の第項は 1 +3 +32 + +3k 1.(311) 3-1 よって, n≧2のとき a=a+3-24-1=1+ =1 すなわち a=3-2"-1-2 初項は =1であるから、この にも成り立つ。 したがって、 一般項は an 45 (1) この数列の階差数列は 1, 5, 9, 13, ...... これは初項が1, 公差が4 ら,その一般項を6mとす b=1+(n = (3+1) すなわち b=4n-3

未解決 回答数: 1