学年

教科

質問の種類

数学 高校生

この問題の付箋が付いている部分の、x軸に垂直でないから〜の部分について質問です。 x軸に垂直でないから、傾きがあり、mとして書けるというのは分かります。ですが、y軸に垂直でないといっても同じではないのですか?

174 2円の共通接線 例題 105 指計 共通接線の木数は2円の位置関係によって変わる(数学A)が,本 間のように、一方が他方の外部にあって離れているときは,共通 内接線と共通外接線がそれぞれ2本ずつある。 それらの方程式を求めるときは 円G上の点(x), )における接線が円 C, にも接する と考えて進めると,計算がらくになることが多い。 共通内接緯 円G:+y*=4 と円C:(x-5)"+y?=1 の共通接線の万程式を求めょ 共通外接線 また,本間については,点と直線の距離の公式を使う方法の他に,相似を使って図形的に える方法や,判別式を利用する方法もある。 答案 円 C,上の接点の座標を(x, y)とすると x?+y°=4 … れx+yy=4 の 2 C 2 接線の方程式は 直線②が円 Caに接するための条件は,円 C2 の 中心(5, 0) と直線② の距離が, 円 Caの半径1に 等しいことであるから 2 15x,-4| ー=1 Vx?+y? 15x-4|=2 のを代入して整理すると 62 5'5 よって 5x」-4=±2 したがって X1 8 =2のとき y=±- 4V6 :== のとき y=±- 5 1から X」 ミ そぎと これらを②に代入して,求める共通接線の方程式はぶ *5 「共通外接線 *+ッ=4, そx+y=4 すなわち 3t±4y=10, x±2/6y=10 8 「共通内接線 5 別解1.求める共通接線はx軸に垂直でないから,その方程式を y=mx+n とする。 この直線が円 C,, Czに接するための条件は,それぞれ |nl |5m+n| -=1 Vm'+(-1)? In=2m'+1, |5m+n|=\m°+1 =2, 中心と接線の距離=# したがって のから In|=2|5m+n の よって ゆえに n=±2(5m+n) n=-10m または n=- 10 -m 3 O円O |n=2/m'+1 の両辺を2乗して 以下,複号同順とする。 n°=4(m?+1) 2 ② と n=-10m から mミ+16 12,7ミ 6 2と n=ー 10 3m から (-10m)={(m+ 6 3 m=±- 4 よって,求める共通接線の方程式は nミチ) 2 m 3 5,6 12 ソ=+ーェキ ビミナ6 6

解決済み 回答数: 3
数学 高校生

【青チャート/空間ベクトルの内積】 赤の内積の計算部分は、何故青で囲った公式を使っていないのですか? これだと普通の掛け算になってしまいますよね... https://naop.jp/topics/topics18.html こちらのサイトにも、ベクトルには積が無いと書か... 続きを読む

461 上5() 。 空間のペクトLo馬 "ののののの 1辺の長きが1 の正四面体OABC にぉいて Ga> nm-z oOC ae (!) 内積・5 を求めよ。 て, OA=4, OB=7, 0C=c とす (2) 辺BC上に BD=さ となるように 求めよ。 7.460 基本事項(11、(2| )( 重要59、 AS06hRS ep 2 6のム&を6 民なる場合は 始点をそろえてなす角の を測る)。 6 @*Z に こついても同じである。 (2 OA とOD RNN (1) と同様にはできない。 そこで, OPD があ で表きれることに着目し、 分配和間を利用する。 点D をとる。このとき, 内積 0A・OD を り | ーーーニーー 上風 和仁 () の6=|zlI5lcosZAOB WP 過3Sモテさ >G足時 <正四面体とは, 4 つの面が 合同な正三角肛でできてい ?四画人(0 ⑰ 05 くBC=1,BD=さ であるか ら BD=二BC 外 3 2(信9+ て) と同様の計 貞。 る2・c三|Z|lclcosZAOC 証弄但 点 D の位置にかかわらず OA・OD の値は一定 ーーの電ana PEですいでの関っ月 守 - 上の例題において, 点 D が辺 BC上にあれば, AB=OB, BD: ABD=ンOBD=テ60* であるから AABD=^AOBD 一 ゆえに, へDOA は DA=DO の二等辺三角形である。 間 ーー、 1 ートg 1 よって OA・OD=IOAI(ODlcosZDOめ (CDicsszpo2.OA全8にすCATーす したがって, 点D の位置にかかわ合志0A・ ・OD の値は一定である。 (<poA= po) csZPo: 人 大 cosとP04 ee 64 ・ 商 は 合に隊 M り

解決済み 回答数: 1