学年

教科

質問の種類

数学 高校生

三角関数です。(1)の2枚目の波戦の部分の求め方が分からないので教えてください🙇🏻‍♀️💦

応用問題 1 00 <2πにおいて、次の三角方程式、不等式の解を求めよ. 1 - cos (0+5)=√3 -√/2 精講 (1) は A=0+ 3 2 π のとり得る値の範囲は 3 π A=0+ 7 とおくと 3 という小純な三角方程式に変えてしまう求める場面も変わら気をつけない といけないのは、変数を変えたときに、「解を求める範囲も変わるということ す。 元の方程式において,解を求める範囲は 0≦0 <2πでしたが、このとき A=0+ √3 2 002 において という変数変換をすることで COS A = cos A = sin20 <!・ π SA</T 3 3 ですので,変数変換をした後の ① の方程式の解は,この範囲で探さなければな りません. そうでないと, 変数を0に戻したときに解が 0≦0<2πからはみ 出してしまったり,あるいはあるべき解が足りなかったりすることが起こりえ るのです.今後も変数変換が登場するたびに思い出してほしいのは, 変数が変われば, 変域も変わる ≤A<- ということです. 標語のように紙に書いてトイレの壁に張っておきたいくらい、 これはとても大切なことです. √√3 ......① 2 ① 解答 0≤0<2π 各辺に π π 1</7/7 π 3 3 程式 ① の解をこの範囲で求めると, π を足すと π 7 == 0 + 1 < 1/1/20 <π 3 3 -1 T Y T TC Pの角を π 7 1/A で答える 3" P 13 3/6 x= 132の範囲 3″

解決済み 回答数: 2
数学 高校生

三角関数です 0≦θ<2πなのにどうして-1≦x≦1なんですか?? あと、(1)と(2)でグラフを変えてるのはなんでですか? もちろん解答が違うのは分かるんですけど、 『関数y=f(x)のグラフと直線y=aの共有点』ってf(x)はx*2+x-1じゃないですか?二次関数のグラ... 続きを読む

重要 例題 144 三角方程式の解の個数 aは定数とする。 0 に関する方程式 sin20-cos0+α = 0 について 次の問いに答 - えよ。ただし, 0≦0<2πとする。 08 (2) この方程式の解の個数をαの値の範囲によって調べよ。 (1) この方程式が解をもつためのαの条件を求めよ。 x2+x-1-a=0 (-1≦x≦1) 指針 cos0=xとおいて, 方程式を整理すると 前ページと同じように考えてもよいが, 処理が煩雑に感じられる。 そこで, ①定数αの入った方程式f(x)=αの形に直してから処理に従い,定数aを右 辺に移項したx2+x-1=αの形で扱うと、関数y=x+x-1(-1≦x≦1) のグラフと直 線y=α の共有点の問題に帰着できる。 →直線y=a を平行移動して,グラフとの共有点を調べる。なお,(2) では x=-1, 1であるxに対して0はそれぞれ1個, 1<x<1であるxに対して0は 解答 cos0=xとおくと,00 方程式は したがって (1-x2)-x+a=0 x2+x-1=a 5 [2] a=-2のとき、x=- 4 5 [3] on <a<1のとき あることに注意する。 2個 LOT f(x)=x2+x-1とすると (1) 求める条件は、-1≦x≦1の範囲で,関数 y=f(x) の グラフと直線y=α が共有点をもつ条件と同じである。 よって、 右の図から -≤a≤1 4 (2) 関数 y=f(x) のグラフと直線y=a の共有点を考えて 求める解の個数は次のようになる。 5 [1] a<- 1 <a のとき共有点はないから 0 個 f(x)=(x+2/12/12-25/2 4 2 -1≤x≤1/ から 2個 [6] - [5] この解法の特長は, 放物線を 固定して, 考えることができ るところにある。 [4]- [3]+ [2] [6]+ [5]- [4]+ [2] - I O O グラフをかくため基本形に。 y=f(x) y=a XA 1<x<1/13-121<x<0の範囲に共有点はそ れぞれ1個ずつあるから 4個 [4] α=1のとき x=-10から3個 [5] -1<a<1のとき,0<x<1の範囲に共有点は1個あるから 2個 [6] α=1のとき, x=1から1個 重要 143 π ya 1 O 12 1x 0 [3] 練習 0 に関する方程式 2cos2d-sino-a-1=0の解の個数を,定数aの値の範囲に p. 226 EX90,91 © 144 よって調べよ。 ただし002とする。 225 4章 23 三角関数の応用

未解決 回答数: 1
数学 高校生

三角関数です この問題についてなんですけど、 青白でマークした不等号の向きについてどうしてそうなってるんですか?? あと、もうひとつ薄めの青でマークしてるところで上のx<-1、1<xていうのは分かるんですけどなんでそうなるための条件がf(-1)f(1)<0というのが分かりま... 続きを読む

224 例題 143 三角方程式の解の の方程式 sin' acos0-2a-1=0 を満たすりがあるような定数。 [同志社大] 囲を求めよ。 1≦x≦で、与式は ① よって、求める条件は、 2次方程式 ① が-1≦x≦1の範囲に少なくともつをも ことと同じである。次の CHART に従って、考えてみよう。 指針> まず, 1種類の三角関数で表す→cos0=xとおくと, (1-x2)+ax-2a-1=0 すなわち x2-ax+2a=0 ① 2次方程式の解と数の大小 グラフ利用 D, 軸, f(k) に着目・・・・・・・・・・!! 10 (6) 解答 HOE cos0=xとおくと, -1≦x≦1であり, 方程式は (1-x2)+ax-2a-1=0 すなわち x2-ax+2a=0….. ① この左辺をf(x) とすると、求める条件は, 方程式f(x)=0が x²=a(x-2) よって,放物線y=x と -1≦x≦1の範囲に少なくとも1つの解をもつことである。 これは,放物線y=f(x) とx軸の共有点について,次の [1] ま たは [2] または [3] が成り立つことと同じである。 y=a(x-2) の共有点のx座 標が-1≦x≦1の範囲にあ I [1] 放物線 y=f(x) が-1<x<1の範囲で,x軸と異なる2 る条件を考えてもよい。 p.139 を参照。 点で交わる, または接する。 [1] YA D≧0 このための条件は、 ①の判別式をDとすると D=(-α)²-4・2a=a(a−8)であるから a(a-8)≥0 よって a≦0,8≦a 軸x=/12/2について-1<<1から -2 <a<2…… ③③ 1 3 f(-1)=1+3a> 0 から a>- f(1)=1+α>0) から a>-1 ②~⑤の共通範囲を求めて <a≦0 -SAP U 3 □ [2] 放物線 y=f(x) が-1<x<1の範囲でx軸とただ1点 で交わり、他の1点は x<-1, 1<xの範囲にある。 このための条件は (-1)/(1)<0 ゆえに (3a+1)(a+1) < 0 1 3 [3] 放物線y=f(x)がx軸とx=-1またはx=1で交わる。 1 f(-1) = 0 またはf(1) = 0 から a=- または α=-1 3 [1], [2], [3] を合わせて -1≤a≤0 参考 (4) (5) よって-1<a< 練習 (4) 4 143 囲を求めよ。 ...... - [2]と[3] をまとめて, f(-1)(1)≧0としてもよい。 検討 x2ax+2a=0をaについ て整理すると DI [2] 20 |x=0))x₂ 2 + 1 Voll + -1 1 NU + 1 -1 100 10 の方程式 2cos20+2ksin0+k-5=0 を満たす0があるような定数kの値の

未解決 回答数: 1