学年

教科

質問の種類

数学 高校生

数IIの領域の最大値最小値の問題です。 ③の直線として考える理由がわからないので教えてください🙇🏻‍♀️

① テーマ領域における最大・最小を考える (教科書P118) 2 例題 x,yが4つの不等式x≧0,y≧0, 2x+y≦8, 2x+3y≦12 を同時に満たす とき, x+yの最大値、最小値を求めよ。 ①まず, 与えられた不等式から領域を確定する。 x,yが4つの不等式x≧0 y≧0, 2x+y8, 2x+3y≦12 を同時に満たす 領域をAとする。 2x+y≦8 2X+34≤12 2x+y≤8 (0.0) 8 5 ↑y (0.4) RA k (3, 2) 45 (40) ys-zx+P x 2x+19512 領域Aは4点 (0, 0), (4,0),(3,2), (0,4) を頂点とする四角形の周および内部である。 Q,次の空欄を埋めよ x+y=k ① とおくと, y=-x+kであり、これは傾きが y s - 1/2 x ₁4 x+yの最大値 最小値を求めたい。 ? この, 斜線部分のどこをとってくればよいか, 文章で整理してみよう。 最小値はAの範囲の中で(0.0)が1番最小となる。 最大値はAの範囲の中でみると直線の不等式の交点 である(32)が(番最人となる。 y切片がで ある直線を表す。 この直線①が領域Aと共有点をもつときのんの値の最大値、最小値を求 めればよい。 x+y=kとおき、直線を考えるのはどうしてだろう? 文章で整理して みよう。 Q,次の空欄を埋めよ ] 8 領域 Aにおいては、 直線 ① が x= (3, 2) x 点 (3,2)を通るときは最大で,そのとき 点(0,0)を通るときは最小で,そのとき である。 したがって, x+yは y=2のとき最大値 x= 0 y= 0のとき最小値 0 をとる。 k= 5 k= 5をとり, ④ この問題に対する自分なりのアプローチをまとめなさい 0 3

回答募集中 回答数: 0
数学 高校生

20と21の問題の途中式を教えてください🙌🏻´-できるだけ詳しくお願いします、、🙇🏻‍♀️‪‪´-

Bz) 3)(x+4) +2) 3 3)(3x+1) えたので, e 食料 (2) (a+b+c)²-(a−b-c)²-(a−b+c)²+(a+b_c\² 計算の順序を工夫したり、 項のまとめ方を工夫して、公式を利用する。 (1) 4つの因数の各定数項に注目すると,(-1)+3=(-2)+42 であるから。 (x-1)(x+3)(x-2)(x+4) と組み合わせて展開すると共通な式x+2xが現れ る。 (2) b+c=X, b-c=Y と考えると, 括弧の中はα と X, a とYの式で表すことが できる。 =(x+2x-3)(x+2x-8) 答 (1) 与式={(x-1)(x+3)}{(x-2)(x+4)} ={(x^²+2x)-3}{(x2+2x)-8} =(x+2x)*-11(x²+2x)+24 =x‘+4x+4x²-11x²-22x+24 =x*+4x³−7x²-22x+24 (2) 5={a+(b+c)}²-{a−(b+c)}²_{a~(b_c)}²+{a+(b−c)}² =a+2a(b+c)+(b+c)²-a²+2a(b+c)-(b+c)² =4a(b+c)+4a(b-c)=8ab 圏 □ 19 次の式を計算せよ。 *1)(x-1)(x-3)(x+1)(x+3) -a²+2a(b-c)-(b-c)²+a+2a(b-c)+(b-c)² 20 次の式を展開せよ。 (1) *(3) (a−b)(a+b)(a²+b²)(a²+b¹) *(4) (2x−y)³(2x+y)³ (5) (a+b)²(a−b)²(a²+a²b²+b¹)² *(6) (x+2)(x-2)(x²+2x+4)(x²-2x+4) *(7) (a+b+c)²+(a+b−c)²+(b+c¬a)²+(c+a−b)² 発展問題 (2)(x+2)(x+5)(x-4)(x-1) (x²+xy+y²)(x²−xy+y²)(x*—x²y²+y¹) (2)(x+y+1)(x+y-1)(x-y+1)(x-y-1) 第1章 数と式 セント 21 (1) α について整理してから展開する。 ごり □ 21 (1)(a+b+c)(a+b2+c^-ab-bc-ca)を展開せよ。 (2) (1) の結果を利用して, (x+y-1)(x^²-xy+y^+x+y+1)を展開せよ。

回答募集中 回答数: 0
数学 高校生

ソタチツとセとテが分かりません どなたかわかるかたいらっしゃいましたら教えて頂きたいです

3 甲府地方気象台は, 富士山の初冠雪日 (以下, 初冠雪日) の日付を発表している。 初冠雪とは, 「山の一部がゆき等の固形降水により白くな った状態が初めて見えたとき」 とされている。 甲府地方気象台が発表している日付は普通の月日形式であるが,この問題では該当する年の1月1日を「1」 とし, 12月31日を「365」(う るう年の場合は「366)とする「年間通し日に変更している。 例えば, 2月25日は、1月31日の「31」に2月25日の25を加えた「56」と なる。 なお, 小数の形で解答する場合は,指定された桁数の一つ下の桁を四捨五入して答えよ。 また、 必要に応じて, 指定された桁まで ⑩にマーク せよ。 (1) 図1は1990年から2019年までの30年間の初冠雪日を箱ひげ図にまとめたもの である。 次の⑩~④のうち, 図1から読み取れることとして正しいものはサ である。 の解答群 解答の順序は問わない。) ス で と サ ⑩ 初冠雪日の範囲は100日以上である。 ① 初冠雪日の四分位範囲は15日以上である。 ② 30 年間で初冠雪日が最も早かった年は,7月に初冠雪が観測されている。 ③ 30 年間で初冠雪日が最も遅かった年は, 10月27日に初冠雪が観測されている。 ④ 10月1日以降に初冠雪が観測された年は, 15以上ある。 (2) 甲府地方気象台は, 甲府市の初雪の観測日 (以下, 初雪の観測日) の日付も発表している。 初 雪とは, 「寒候期 (10月から3月までの時期)に初めて降る雪のこと」とされている。 0 220 230 240 250 260 270 280 290 300 初冠雪日 図2は1990年から2019年までの30年間の初冠雪日を横軸にとり, 各年における初雪の観測 日から初冠雪日を引いた日数 (以下, 初雪までの日数) を縦軸にとって散布図にまとめたものであ る。なお,散布図には補助的に切片が330,360, 390 である傾き -1 の直線を3本付加している。(出典:甲府地方気象台のWeb ページにより作成) 図2 初冠雪日と初雪までの日数の散布図 また、次の表は30年間の初冠雪日と初雪までの日数のデータをまとめたものである。 ただし, 初冠雪日と初雪までの日数の共分散は,初冠雪日の偏差と初雪までの 日数の偏差の積の平均値である。 (i) 初冠雪日と初雪までの日数の相関係数に最も近い値は ス ある。 220 230 240 250) 260 270 280 290 300 310 図1 初冠雪日の箱ひげ図 (出典: 甲府地方気象台のWeb ページにより作成) について,最も適当なものを、 次の⑩~④のうちから一つ選べ。 160 初雪までの日数 ⑩ 0 ① -0.2 ② -0.4 ③ -0.6 4 -0.8 セ (ii) 次の⑩~②のうち,図2から読み取れることとして正しいものは セ |の解答群 ⑩ 初冠雪日が260 以上の年は, すべて初雪までの日数が100以下である。 ① 初冠雪日が最も早い年は, 初雪の観測日が最も遅い。 ② 初冠雪日が最も遅い年は, 初雪の観測日が最も早い。 (Ⅱ) 初雪の観測日の日付を 「年間通し日」としたとき,初雪の観測日の平均値はソタチ ツ テ の解答群 ⑩ 初冠雪日の分散よりも小さい ① 初冠雪日の分散と等しい ② 初冠雪日の分散よりも大きい 140 である。 120 100 180 60 平均値 分散 初冠雪日 274.77 初雪までの日数 84.57 40 20 337.11 標準偏差 18.36 607.98 24.66 最小値 222 初冠雪日と初雪までの日数の共分散 -352.80 29 (出典: 甲府地方気象台のWeb ページにより作成) 最大値 300 153 であり、初雪の観測日の分散はテ

回答募集中 回答数: 0
数学 高校生

【データの分析】 セとソはどうやって求めますか?解説見てもよく分からないのでよろしくお願いします🙇‍♂️

〔2〕 太郎さんと花子さんと健太さんと明子さんの四人は、先日クラスで行 た10点満点の英語と数学の小テストの結果について話している。次の表 四人の小テストの結果をまとめたものである。 英数 語学 英語 数学 太郎 8 8 サ 花子 7 10 0 - 2.00 ④ 0.25 (1) 四人の英語の点数の平均値は の数学の点数の平均値は8で, 分散は 太 6 6 ① -1.00 ⑤ 0.50 コ 明子 7 8 で, 分散は である。 の解答群 (同じものを繰り返し選んでもよい。) 0. 0.50 1.00 である。四人 -0.25 2.00 (数学Ⅰ・数学A 第2問は次ページに続く。) (2) 太郎 : 四人のデータの平均値と分散についてはわかったね。 花子: ここから共分散を求めて, 英語と数学の相関係数を計算すると になるよ。 明子 : 相関係数は, データの組が直線に沿って分布する程度を表す値だ ね。 健太 : だから,データが2組しかない場合の相関係数は散布図を見ると すぐにわかるよ。 花子: そうだね。 例えば, 太郎さんと私の二人の英語と数学の相関係数 は t 健太さんと明子さんの二人の英語と数学の相関係数 ス ス は ソ であることがわかるね。 太郎 : データが3組になっても,相関係数が正なのか負なのかくらいは わかるかな。 明子 : 四人のうち三人のデータで散布図をかくと, 英語と数学の相関係 数が負になりそうなのは1組だけだよ。 - 2.00 0.50 , ソ 第3回 実戦問題 第2問 の解答群 (同じものを繰り返し選んでもよい。) - 1.50 1.00 ② -1.00 (3) - 0.50 ⑦ 1.50 (8) 2.00 0 (数学Ⅰ・数学A 第2問は次ページに続く。) 第 3 回 「実戦問題

回答募集中 回答数: 0
数学 高校生

階級値を用いて求めた平均値ってなんですか?

11 次のヒストグラムは,昭和60年と平成30年における出産時の母の年齢別に,出 生数をまとめたものである。 ただし,ヒストグラムの階級はそれぞれ, 10歳以上15 歳未満,15歳以上20歳未満, 50歳以上55歳未満のように区切られている。 昭和60年(1985年) 平成30年(2018年) 800,000 700,000 600,000 500,000 400,000 300,000 200,000 100,000 0 (人) 10 23 17,854 15 247,341 20 682,885 25 381,466 4) ⑤ 30 93,501 35 ① 2 (ア) ○ 40 8,224 45 (ア): X (7): X (ア): X 244 50 1 55歳) (ア) ○ (1): 0 (1): X (1): 0 (1): X (1): X 400,000 350,000 300,000 250,000 200,000 150,000 100,000 50,000 0 (人) 10 37 15 8,741 7): X (ウ): ○ (ウ): ○ (ウ): ○ (ウ): X 77,023 20 334,906 233,754 25 30 211,021 35 51,258 資料:厚生労働省「平成30年 (2018) 人口動態統計」 [1] 上のヒストグラムから読み取れることとして,次の (ア), (イ), (ウ)の意見 があった。 出産時の母の年齢について,ヒストグラムから読み取れる意見には○ を,ヒストグラムから読み取れない意見には×をつけるとき, その組合せとして, 下の①~⑤のうちから最も適切なものを一つ選べ。 22 40 (ア) 中央値は, 昭和60年,平成30年ともに 「30歳以上35歳未満」の階 級に含まれている。 1,591 68 (イ) 度数の最も大きい階級の階級値は,昭和60年よりも平成30年の方が 10歳高い。 45 (ウ) 階級値を用いて求めた平均値は, 昭和60年よりも平成30年の方が 高い。 50 55歳)

回答募集中 回答数: 0