学年

教科

質問の種類

数学 高校生

第2問(2)のコサシスセソについてです。 2枚目の解答の波線部分がよく分からないので、分かる方がいらっしゃったら教えて頂きたいです🙇‍♀️

第2問~第4問は、いずれか2問を選択し、 解答しなさい。 第2問 選択問題 (配点20) 図1のように、東西南北に作られた碁盤の目状の道路があり、交差点と交差 点の間の1区画の距離は1km である。 0° 0 が対応している。 .P 北 図1 地点Oから地点P までの最短経路について考えてみよう。 東に1区画進むことを「→」,北に1区画進むことを「↑」と表すことにすると 一つの最短経路に対して、「→」3個 「1」 3個の並べ方が一つ対応するので最 短経路の総数はアイ通りと求められる。 東 西 最短経路の距離は6km であるが,初めて地点Pに到達するまでの距離が8km になるような経路の総数はいくつになるだろうか。 ただし, 図1の道路のみを移 動し、交差点以外の場所で進む方向を変えないこととする。 例えば、距離が8km になるような経路には図2、図3のような場合がある。 P P 南 図2 図3 西に1区画進むことを 「←」 南に1区画進むことを「↓」と表すことにし, 経 路に対応した←↑↓の順列を道順ということにすると 図2の経路には, 道順→↑←↑→→→↑ 図3の経路には, 道順 →↑↑→↓→↑↑ (第6回3) (数学Ⅰ・数学A 第2問は次ページに続く。) (1) ↑↓の順列には対応する経路が存在しないものも含まれる。 例えば、道 には対応する経路がない。 ウ 順 HO I と する。 I nom O ② ↑↑↑↓→→1③→→→1→1-1- の解答群 (解答の順序は問わない。) オ ↑→↓→↑↑↑ 2017 (2) 図2のように, 「←」 が含まれるような道順の総数を考える。ただし、例えば, 道順が→→→↑↑↑← → のように最短経路で地点Pに到達した後、1kmの区 仕復して再び地点Pに到達する経路も含めて考える。 」か「↑」 が3個の順列が一つ対応 一つの経路には、「 T20 2015 40ATEMONEY (1) での考察から 「→」が4個, 「←」 が1個の5個については、 並びにオ という制約があるので,「→」が4個,「←」が1個の5個の並び方は カ 通りある。 $33458200% AS これに 「↑」を含めた8個を並べると, 「←」が含まれる道順の総数はキクケ 通りある。 同様に考えると、図3のように,「↓」が含まれる道順の総数はコサシ 通 01030943-1 りある。 したがって 初めて地点Pに到達するまでの距離が8km になるような経路 の総数はスセソ 通りと求められる。 ① tttt→→ の解答群 + は左端にのみ並ばない 「←」は左端にも右端にも並ばない (第6回4) JUTUSA ① 「←」は右端にのみ並ばない

回答募集中 回答数: 0
数学 高校生

(3)の質問です。 2200=〜(k≧5)までは分かりました。 そこからk=5を試せませんでした。どう試そうと思うのですか? またk^3の位に注目して〜のところでは、例えばk=6のとき、5k^3は2200より小さくなると思うのですが、なぜこの不等式が成り立つのですか? ... 続きを読む

第2問~第4問は,いずれか2問を選択し、 解答しなさい。 第3問 (選択問題(配点20) 自然数Nを7進法で表すと3桁の数 abc (7) となり, 8進法で表すと3桁の数 cba(s) になるとする。 (1) このような自然数Nを求めよう。 a, b, c について が成り立つ。 変形すると アイla-b- アイ b= a= と オ ウエ c=0 ウエ の最大公約数は カキ a- クケ となる。よって, 条件を満たす α, b,c は b= サ である。 したがって,Nを10進法で表すと, N = C= オ スセソ であるから、この等式を である。 (数学Ⅰ・数学A 第3問は次ページに続く。 (2) Nを5進法で表すと, タチツテ である。 (5) (3) 10N を進法で表すと, 4230(k) となった。 このとき, ト k= となる。 (4) 10Nの正の約数は全部でナニ個ある。 これらのうち, 2の倍数はヌネ 個, 4の倍数はノハ 個 8の倍数は ヒ 1個ある。 したがって10N のすべての正の約数の積を2進法で表すと,末尾には 0 が連続 して フへ 個並ぶ。 LE

回答募集中 回答数: 0
数学 高校生

186. このような記述でも問題ないですよね? またこの類の問題ではほとんどの場合互いに素を用いるように思うので、互いに素を使いたい、そして有理数の性質(m/nでm,nは整数でn≠0)よりこのような証明方法になるということですよね? また、有理数であることを仮定してから、「... 続きを読む

演習 例題186 指数方程式の有理数解 (1) 3*=5 を満たす xは無理数であることを示せ。 (②2) 35-2y=53-6 を満たす有理数x,yを求めよ。 m (m,nは整数,n≠0) と表される数を有理数といい, 有理数でない n 指針 実数において, ものを無理数 という。 (1) 無理数であることの証明では, 有理数であると仮定して, 矛盾を導く (背理法)。 (2) 方程式1つに変数がx,yの2つ。 有理数という条件で解くから, (1) が利用できそう。 底が3,5であるから, 3' =5 [(1)] の形にはならないことを用いる。 解答 (1) 3=5を満たすxはただ1つ存在する。 そのxが有理数であると仮定すると, 3*=5>1 であるから m CHART 無理数であることの証明 (有理数) とおいて、 (1) n 背理法 事柄が成り立たないと仮定し て矛盾を導き, それによって m x>0で,x=- (m,n は正の整数)と表される。 =(a+事柄が成り立つとする証明法 (数学Ⅰ)。 n m 37=5 よって 両辺をn乗すると 3m=5n ① ここで,①の左辺は3の倍数であり,右辺は3の倍数ではな いから,矛盾。 よって, xは有理数ではないから、無理数である。… 3x-y+6=5x+2y (2)等式から 2) spol x+2y=0 と仮定すると, ② から x-y+6 3x+2y = 5 練習 ③ 186 x,yを有理数とすると, x-y+6, x+2y はともに有理数で x-y+6 x+2y ...... ゆえに このとき, ② から よって x-y+6=0 ④,⑤を連立して解くと も有理数となり, (1) により③は成り立たない Gram x+2y=0 000 3x-y+6=1 基本 167 x=-4, y=2 等式 20x10y+1 を満たす有理数x,yを求めよ。 3と5は1以外の公約数を もたない。 このとき,3と 5は互いに素 という。 3÷36=5÷5-2y 3x-(y-6)=5x-(-2y) ②から3-y+6)x+2y X = (5x+2y)x+2y (1) で3'=5を満たすは 無理数であることを証明し ている。 KH ④: x+2y=0 と仮定して, 矛盾が生じたから, x+2y=0 である。」< 40 T810 Op.294 EX120 53

回答募集中 回答数: 0
数学 高校生

数1A 集合の表し方ですが、⑵の解答解説を読んでもイマイチ理解できません。詳しく教えて下さい。

例題 145 集合の表し方(3) 20以下の自然数の集合を全体集合Uとして,次のUの部分集合 A, B, C, D の包含関係をいえ. A={n|nは3の倍数},B={n|nは6の倍数}, C={n|nは3の倍数または2の倍数}, D={n|nは3の倍数かつ2の倍数} (2) 全体集合をU={n|nは自然数, 1≦n≦6},Uの部分集合を A={a, a-3},B={2, a+2, 9-2a} とする. A∩B≠Ø, AD2 のとき,αの値を定め, A を求めよ. 方 (1) x∈P となるxが必ずxEQのとき,PCQ となり, PCQ かつ QCP のとき,P=Q となる. まずは,それぞれの集合を要素を書き並べて表す. (2) 与えられた条件に注目する. A∩B=Ø とは、 AとBの中に同じ要素があるということ. さらに, AD2 より, その要素は2ではないことがわかる. 287 89 ■解答 (1) A={3,6,9,12,15,18},B={6, 12, 18}より, BCA E={n|nは2の倍数} とすると, E={2, 4, 6,8,10, 12, 14, 16,18, 20} C=AUEDA Focus より、 D=ANE={6,12,18}=B よって, B=DCACC (2) U={1, 2, 3, 4, 5, 6} 6. (1+$)S=1+alx A={a, a-3},B={2, a+2, 9-2a} で, AUE A ●x A- ***11+ -B、 ** ・P. DANGERE 6. - 105X a-3<a<a+2, AD2 より, _A∩B={9-2a} (i)a=9-2a のときAキュ α=3 となり,このとき a-3=0 AD つまり, A={0,3} となるが, UD0 より不適. 素となる. (ii) a-3=9-2α のとき a=4 となり,A={4, 1},B={2,6,1} は、ともにの部分集合で, A∩B={1} よって,a=4,A={2,3,5,6} 歌 第4章 1 ≤ 058 150-356- 15072€ 6-8 19-206 a=a+2,0) a-3キα+2 であり、 2がAの要素でないの で, 9-2α が共通の要 集合の記号∈, C, n, U, , Ø, Uは使って覚えよう Uの要素は1から6ま での自然数 全体集合の中に入って いるか注意する。 A∩B≠Ø の確認

回答募集中 回答数: 0
数学 高校生

数学A整数の性質の問題です。 (3)だけ何言ってるか全然わかんないです。 解答より丁寧に教えてほしいです。お願いします🙇

類題4 オリジナル問題(解答は39ページ) 太郎さんと花子さんは,2人で次のようなルールのゲームをしている ・ルール- ①太郎さんは,1桁の自然数を一つ選ぶ。 これを N とする。ただし,太郎 さんは、このNの値を花子さんに伝えない。 ②花子さんは,適当な自然数を一つ選んで太郎さんに伝える。この自然数 ANCIL をMとする。 1000 ③太郎さんは,MをNで割った余りを花子さんに答える。 13610% ④ 花子さんは,太郎さんが③で答えた数をもとに, Nの値を当てる。 例えば,N=3,M5のとき,太郎さんは ③ で花子さんに2と答える。 この とき, 花子さんは ④ でN=3であると必ず当てることができる。 このゲームについて,次の問いに答えよ。 (1)M=10のとき, 太郎さんは③で1と答えた。 このとき, Nの値として考 えられるものは, アとイである。 ただし, ア とイ の解答の順序を問わない。 (2)M=53のとき,太郎さんが③で答える数によっては, 花子さんが ④ で N の値を必ず当てることができる。 そのような太郎さんの答えは りある。 ウ 通 (3) 太郎さんが2を選んだとき, 花子さんが ④ でNの値を必ず当てることが できるようなMの値のうち、最も小さいものは であり,2番目に 小さいものはオカである。 (4)Nの値によらず,花子さんが④でNの値を必ず当てることができるよう な M の値のうち,最も小さいものはキクケコである。

回答募集中 回答数: 0