学年

教科

質問の種類

数学 高校生

127番の問題がわからないです! ただ一つの解を持つ時に3と4に別れるのはyの値の積が0になる時を考えてるのかなと思ったのですが、なぜ126番の問題だとそれを考えなくても良いのかが全くわからないです 誰か教えて欲しいです!すみませんがよろしくお願いします🙇‍♂️

196 基本 例題 126 2次方程式の解と数の大小 (2) 00000 2次方程式 ax²-(a+1)x-a-3=0が, -1<x<0, 1 <x<2の範囲でそれぞれ つの実数解をもつように,定数 αの値の範囲を定めよ。 重要 12 p.191 基本事項 指針 f(x) =ax²-(a+1)x-a-3 (α≠0) としてグラ [a>0] フをイメージすると, 問題の条件を満たすには y=f(x) のグラフが右の図のようになればよい。 すなわち f(-1) f (0) 異符号 la<0 y=f(x) e 0 1 + 0 2x [f(-1)(0) <0] y=f(x) かつ f(1) f (2) が異符号 [f(1)(2)<0] である。 αの連立不等式を解く。 CHART 解の存在範囲 f(p)f(g) <0ならpgの間に解 (交点)あり 解答 f(x)=ax2-(a+1)x-a-3とする。 ただし, a≠0 題意を満たすための条件は, 放物線y=f(x) が-1 <x<0, 1 <x<2の範囲でそれぞれx軸と1点で交わることである。 すなわち ここで f(-1)f(0)<0 f(1)f(2)<0 f(-1)=α(−1)-(a+1) (−1)-a-3=a-2, f(0)=-a-3, f(1)=α12-(a+1) ・1-a-3=-a-4, f(2)=α・22-(a+1) ・2-a-3=a-5 f(-1)f(0) <0から ゆえに よって (a-2)(-a-3)<0 (a+3)(a-2)>0 また,f(1)(2)< 0 から a<-3, 2<a ...... ① 2次方程式であるから、 (x2の係数) 0 に注意 注意指針のグラフからむ るように,a>0 グラフ に凸), a<0(グラブ 凸) いずれの場合も F(-1)/(0) <0 f(1)(2)< が、題意を満たす条件で よって、a>0のとき のときなどと場合分け て進める必要はない。 ゆえに よって (-a-4)(a-5)<0 (a+4)(a-5)>0 a<-4, 5<a... ① ② の共通範囲を求めて a<-4,5<a これはα=0を満たす。 -4-3 2 5

解決済み 回答数: 1
数学 高校生

数Aの約数と倍数の問題です この問題の「つまり」の部分のあとの波線の部分 がどうしてそうなるのかが分かりません

例題 112 n! に含まれる素因数の個数 一解したとき、 次の問いに答えよ。 から30までの自然数の積 30!=30.29········ 2.1 をNとする。 Nを素 000 素因数2の個数を求めよ。 素因数の個数を求めよ。 p.426 基本事項 3 Nを計算すると、末尾には 0 が連続して何個並ぶか。 HART & THINKING □=1.2.3......(n-1)nの素因数々の個数 からまでのんの倍数 の倍数 の個数の合計 130には, 右の表に付いたの数だけ2が掛け合 わされる。つまり、 30 以下の自然数のうち、2の倍数, …………… の個数の合計が, 30!に含 2の倍数 23の倍数, まれる素因数2の個数になる。 ? 2 4 6 8 16 28 30 20000 0 00 22 0 0 0 なお、以下の自然数のうち, αの倍数の個数は, n をαで割った商として求められる。 23 O 0 24 □ 末尾に0が1個現れるのはどのようなときだろうか? 1から30までの自然数のうち 2の倍数の個数は, 30を2で割った商で 15個 22 の倍数の個数は 30を2で割った商で 2 の倍数の個数は, 30を2で割った商で 7個 22の倍数は素因数2を 3個 2個もつが、2の倍数と して1個 22の倍数と 2 の倍数の個数は 30を2で割った商で 1個 よって、 素因数2の個数は 15+7+3+1=26 (個) して1個数えればよい。 (1)と同様に5の倍数は6個, 5の倍数は1個あるから,それぞれ30÷5,30÷5" 素因数5の個数は 6+1=7 (個) (1)(2)から,Nを素因数分解したとき, 素因数2は26 個, 素因数5は7個ある。 2・5=10であるから,Nを計算すると、 その数の末尾には 0が連続して7個並ぶ。 の商。 素因数25を掛けると 末尾に0が1つ現れる。 素因数5の個数分だけ 0が並ぶ。 風料

解決済み 回答数: 1
数学 高校生

二次不等式が解けません この2枚目の自分のやり方がなぜダメなのか教えてください

187 基本事項 01 DO 重要 例題 1122次不等式の解法 (3) 191 次の不等式を解け。 ただし, αは定数とする。 (1) x²+(2-a)x-2a≤0 (2) ax²≤ax 基本110 文字係数になっても,2次不等式の解法の要領は同じ。 まず, 左辺 = 0 の2次方程式を 指針 解く。 それには ① 因数分解の利用 ②解の公式利用 が、ここでは左辺を因数分解してみるとうまくいく。 の2通りある 2次方程式の解α,βがαの式になるときは,との大小関係で場合分けをしてグ ラフをかく。もしくは,次の公式を用いてもよい。 a<βのとき (x-a)(x-B)>0⇔x<a, B<x (xa)(x-B) <0⇔a<x<B (2)x2の係数に注意が必要。 a0a=0,α<0 で場合分け。 CHART (xa)(x-3)の解α, B の大小関係に注意 の場合、左 形に。 に。 -1< ●場合、左の コピー4+50円 ての実数 v>0 (1)x2+(2-α)x-2a≧0から 解答 [1] a<-2 のとき,①の解は a≤x≤-2 [2] a=-2 のとき,① は (x+2)'≤0 よって,解は x=-2 [3] -2<αのとき, ① の解は (x+2)(x-a)≤0 ① [2] [3] x x a a 0 -2 -2≤x≤a 以上から a<-2のとき a≦x≦2 2-4x+10 a=-2のとき 2<αのとき (2) ax≦ax から ax(x-1)≤0. ① 0>(8-)(1 x=-2 -2≦x≦a [1]a>0 のとき, ①から x(x-1)≤0 両辺を正の数αで ときy=l ときy> よって,解は 2010- [2] α=0 のとき,①は 0x(x-1)≦0 これはxがどんな値でも成り立つ。意 よって、は すべての実数 [3] a< 0 のとき, ①から +6 ・軸は共有 これと 下に っては x0,1≦x 以上から x(x-1)≥0 >0 すべて a>0 のとき 0≦x≦1; a = 0 のとき すべての実数; a<0 のとき x≦0, 1≦x 割る。 ( となる。 は 「< または = 」 の意味で, <とのどちらか一方 が成り立てば正しい。 ①の両辺を負の数αで 割る。 負の数で割るから、 不等号の向きが変わる。 注意 (2)について, ax≦ax の両辺をax で割って, x≦1としたら誤り。 なぜなら、 ax = 0 のときは両辺を割ることができないし, ax < 0 のときは不等号の向きが変わ るからである。

解決済み 回答数: 2
数学 高校生

(2) →矢印の変形はどうしてするのでしょうか?? ∮aからxの形で使わなければならない???でもxからaだとダメな理由を教えてください。お願いします

380 基本 例 242 定積分と微分法 (1) SF(1)dt=x-3x-4 次の等式を満たす関数f(x) および定数aの値を求めよ。 (2) 1000 (t)dt-x-3x 指針 とすると であるから, off(t) dt=f(x)が成り立つ。 a が定数のとき,s (1) dt は xの関数である。 その導関数について,F( dx) (t)= [F(1) = x (F(x) F(a))=F(x)=(x) 0.374 dx また、等式で x=α とおくと, f(t) dt=0 であるから, 左辺は0になる。 これより αの方程式が得られる。 (2) まず,与えられた等式を f(t)dt=-x+3x と変形して, 両辺をxで微分 定数F (α) はxで微分すると、 CHART 定積分の扱い SS"を含むならxで微分 (1) Sof(t)dt=x-3x-4 ① とする。 解答 ①の両辺をxで微分すると dx Ja ds.f(t)dt=2x-3 すなわち f(x)=2x-3 また, ① で x=α とおくと, 左辺は0になるから 0=α²-3a-4 よって (a+1)(a-4)=0 したがって ゆえに a=-1,4 f(x)=2x-3;α=-1,4 (2) Sef(t) dt=x3xから df(t)dt=f(x) dx SSf(t)dt=0 Sof(t)dt=-x+3x ②の両辺をxで微分すると Ja すなわち f(x)=-3x2+3 上端と下端を交換した ② で axSof(t)dt=-3x2+3 また,② で x=α とおくと, 左辺は0になるから ゆえに したがって 0=-a³+3a a(a²-3)=0 よって a=0, ±√3 f(x)=-3x2+3;a=0, ±√3 df (t)dt=flt としてもよい

解決済み 回答数: 1
数学 高校生

黄チャートのこの問題なのですが、赤枠のところがよく分からないので教えて欲しいです、、 それから赤枠以降も分からないので、教えていただけると助かります😭🙇‍♀️

基本 例題 66 最大・最小の文章題 (1) 大 00000 BC=18, CA=6 である直角三角形ABC の斜辺AB上に点Dをとり, Dか ら辺BC, CA にそれぞれ垂線 DE, DFを下ろす。 △ADFと△DBE の面積 の合計が最小となるときの線分 DE の長さと,そのときの面積を求めよ。 全体が右へ 場合に分けて HART & SOLUTION 文章題の解法 Hom 基本 60 117 基本形に (軸が定義光) るから、 1 2 定義 (6-x)2 頂点で 2 54-(6-x)² よって ADBE=- -·54= 62 x² 同様に, △ABC∽△DBE であり △ABC: △DBE=62:x2 3 2x2 小となる。 +2 05 150 0<x<6 AF=6-x ① △ABC∽△ADF であり, △ABC: △ADF=62:(6-x)2 △ABC=18・6=54 であるから △ADF= 6-x)2.54 ←相似比がmin→ 面積比はm²n2 ← 三角形の面積は 最大・最小を求めたい量を式で表しやすいように変数を選ぶ DE=x とすると, 相似な図形の性質からADF, △DBEはの式で表される。 また、xのとりうる値の範囲を求めておくことも忘れずに。 解答 DE=x とし, △ADFとDBE の 面積の合計をSとする。 0<DE=FC<AC であるから A D F B E C ← xのとりうる値の範囲。 (辺の長さ)>0 3章 8 2次関数の最大・ ・最小と決定 1 (底辺)×(高さ) 別解 長方形 DECF の面積 一義城の 定額 したがって, 面積は AS 549 S=△ADF + △DBE る。 3 = -{(6-x2+x2} 27 をTとすると, Tが最大に なるときSは最小となる。 DF=3(6-x) から T=x3(6-x) =-3(x-3)2+27 0<x<6 から, x=3でT は最大値27 をとる。 よって, 線分 DE の長さが 2 =3(x²-6x+18) 3のとき, Sは最小値 0 3 6 X =3(x-3)2 +27 12.6.18-27=27 ①において, Sはx=3で最小値 27 をとる。 をとる。 よって, 線分 DE の長さが3のとき面積は最小値27 をとる。 PRACTICE 662 AC=BC, AB=6 の直角二等辺三角形ABCの中に, 縦の長さが 等しい2つの長方形を右の図のように作る。 2つの長方形の面積の 和が最大になるように作ったとき, その最大値を求めよ。 B

解決済み 回答数: 1
数学 高校生

(2)の場合分けについて質問です。私は問題を解くときに(i)0<a<2(ii)2≦aのように解答と逆に=をつけて場合分けしたのですが間違いですか。≦は確か、<または=、と言う意味だったと思うのですが、、、 よろしくお願いします。🙇

重 定価 とき 146 基本例 85 2次関数の係数決定[最大値 DO |(1) 関数y=-2x2+8x+k (1≦x≦4) の最大値が4であるように、定数の値 | (2) 関数y=x2-2ax+α2-2a (0≦x≦2) の最小値が11になるような正の定数 を定めよ。 また、このとき最小値を求めよ。 a の値を求めよ。 基本8082 重要 6 指針 関数を基本形y=a(x-b)'+αに直し, グラフをもとに最大値や最小値を求め、 (1)(最大値)=4(2) (最小値) =11 とおいた方程式を解く。 (2) では, 軸x=α (a>0) が区間 0≦x≦2の内か外かで場合分けして考える。 CHART 2次関数の最大・最小 グラフの頂点と端をチェック 区間の中央の値はって あるから,軸x=2は区 間1≦x≦4で中央より 左にある。 解答 (1) y=-2x2+8x+k を変形すると y=-2(x-2)2+k+8 y k+8--- 最大 よって, 1≦x≦4においては, 右の図から, x=2で最大値+8 0 1 2 をとる。 ゆえに k+8=4 最小 よって k=-4 んの方程式を解く。 このとき,x=4で最小値 -4 をとる。 最大値を4とおいて、 (2) y=x2-2ax+ α-2a を変形すると y=(x-a)²-2a [1] 0<a≦2 のとき,x=αで 最小値 2α をとる。 [1] y 軸 11 a 2a=11 とすると α=- 2 0 2 x これは 0<a≦2を満たさない。 [2] 2<αのとき, x=2で の 「αは正」に注意。 0 <a≦2 のとき, 軸 x=αは区間の内。 頂点 x=αで最小。 の確認を忘れずに。 -2a 最小 2<αのとき, 軸x=aは区間の右外。 →区間の右端 x=2で最 最小値 22-2a・2+α2-2a, つまりα-6a+4 をとる。 α-6a+4=11 とすると α²-6a-7=0 [2] YA a2-6a+4! 最小 a これを解くと a=-1,7 02 2 <αを満たすものは a=7 以上から、求めるαの値は α=7 -2a (a+1)(a-7)=0 の確認を忘れずに。 85 んの値を求めよ。 練習 (1) 2次関数y=x²-x+k+1の-1≦x≦1における最大値が6であるとき, 定数

解決済み 回答数: 1
数学 高校生

この問題について質問です。そもそも,n=kが整数である時なぜ,n=k+1も整数だと仮定してもいいのですか?

504 重要 例題 60 n=k, k+1の仮定 解答 1000 nは自然数とする。 2 数x, yの和と積が整数ならば, x”+y" は整数である を証明せよ。 指針 自然数nの問題であるから, 数学的帰納法で証明する。 xk+1+yk+1 xk+y* で表そうと考えると ***+y**¹=(x*+y*)(x+y)=xy(x*-1+y14-1) よって、「x+yk は整数」に加え、「xk-1+yk-1 は整数」という仮定も必要。 そこで,次の [1], [2] を示す数学的帰納法を利用する。 下の検討も参照。 [1] n=1, 2 のとき成り立つ。 初めに示すことが2つ必要。 [2] n=k, k+1のとき成り立つと仮定すると, n=k+2のときも成り立っ 仮定にn=k, k+1などの場合がある CHART 数学的帰納法 [1] n=1のとき 出発点も それに応じて n=1,2を証明 x'+y'=x+yで, 整数である。 n=2のとき x2+y2=(x+y)²-2xy で, 整数である。 n=1,2のときの 整数の和差積は [2] =k,k+1のとき, x”+y” が整数である, すなわち, n=k, k+1の x+yk, xk+1+yk+1はともに整数であると仮定する。 n=k+2のときを考えると xk+2+114+2 = (x4 +1+y+1)(x+y)-xy(x*+yk). XC x+y, xy は整数であるから, 仮定により, xk+2+yk+2 も整数である。 よって, n=k+2のときにもx"+y” は整数である。 [1], [2] から, すべての自然数nについて,x "+y” は整数で ある。 =2のときの 整数の和 注意 [2] の仮定でn=k-1, k とすると, k-11の条件からk≧2 としなければならない 上の解答で n=k, k+1としたのは, それを避けるためである。 同n=h

解決済み 回答数: 1
数学 高校生

指針の四角3のところで2分の1でくくってると思うのですがこの2分の1はグラフに影響しないんですか? 語彙力なくて質問内容が分からなかったらすみません💦

229 000 をいえ。 141 三角関数のグラフ (2) cos(2)のグラフをかけ。 また、その周期を求めよ。 基本のグラフy=coso 基本 • 00 基本140 との関係 (拡大 縮小, 平行移動)を調べていく。 であるから基本形y=cose をもとにし y=2 cos(2), y=2 cos- 0) >0) ① y=coseを軸方向に2倍に拡大 ② ①を軸方向に2倍に拡大 基本事項 てグラフをかく要領は,次の通り。 →y=2cos0 ① 2倍に拡大 ( 12 倍は誤りy=2cos2 0 2 ③②を軸方向に だけ平行移動 →y=2cos- 3 2 cos(0). ③ えられる。 注意 y=2cos 2 6 cos(-)0 移動したものと考えるのは誤りである。 CHART 三角関数のグラフ 基本形を拡大・縮小,平行移動 0 のグラフが y=2cos 12 のグラフを0軸方向にだけ平行 6 平行移動 -5-2 6 y=2 cos(2-7)=2 cos(0-1) 0の係数でくくる。 e 0 よって、グラフは図の黒い実線部分。 周期は2 =4π ly=cos の周期と同 2 じ。 ②y=2cosz √3 2 ③y=2cos1/12 (5) 4 3 2 π 52 2TT 10 10/3 3 π 6軸との交点や最大・ 最小となる点の座標を -T 12 1 0 -2 3 32 y=coso 27 T 4 4章 2 三角関数の性質、 グラフ チェック 9 3π 2 4л 2 13' 3 (12/20)(1/2-2). ①y=2cose (10x. 0). (x. 2) 試験の答案などでは、上の図のように段階的にかく必要はない。 グラフが正弦曲線であることと周期が4であることを知った上で, あとは曲線上の主な点 9 T をとってなめらかな線で結んでかいてもよい。

解決済み 回答数: 1