学年

教科

質問の種類

数学 高校生

数bの等比数列の質問です。この問題の⑵で立式がなぜこのようになり、式変形もどのようにやっているかがわかりません。教えていただきたいです。

Date 重要 例題 28 S2m, S2m-1 に分けて和を求める n 一般項がαn=(-1)+1n2 で与えられる数列 {an} に対して, Sn=ak とする。 (1) a2k-1+a2k (k= 1, 2, 3, ......) をんを用いて表せ (2) S= (n=1, 2, 3, ...) と表される。 指針 k=1 (2) 数列{an} の各項は符号が交互に変わるから,和は簡単に求められない。 次のように項を2つずつ区切ってみると Sn=(12-22)+(32-42)+(52-62)+...... =b2 =b1 =b3 上のように数列{bm} を定めると,b=akは自然数)である。よって,m を自然数とすると [1]nが偶数,すなわちn=2mのときはS2m=bx=(az-1+aan)として求め られる。 [2]nが奇数,すなわちn=2m-1のときは,S=S2-1+αm より S2m-1=S2m-a2mであるから, [1] の結果を利用して S2-1 が求められる。 このように、nが偶数の場合と奇数の場合に分けて和を求める a2k-1+αzk=(-1)2k(2k-1)^+(-1)2k+1(2k)2 =(2k-1)-(2k)=1-4k (−1)偶数=1, (−1)奇数=-1 ={(2k-1)+2k} CUSTO×{(2k-1)-2k} Sm=(a1+a2) +(as+as)+...... +(a2m-1+azm) 451 1 3種々の数列 [1]=2mmは自然数)のとき = m m S2m (a2k-1+a2k) = (1-4k) n m= 2 k=1 k=1 =m-4.1/23mm+1)=-2m-m -であるから S.=-2(2)-=-n(n+1) [2]=2m-1(mは自然数)のとき azm=(-1)2m+1(2m)=-4m² であるから S2m-1=Szmazm=-2m²-m+4m²=2m²-m n+1 であるから m= 2 S₁=2(n+1)² - n+1 = (n+ 1 (n+1){(n+1)-1} 2 2 Sm=-2m²-mに m= =2を代入して,n の式に直す。 S2m=S2m-1+a2m を利用する。 Szm-1=2m²-mをnの 式に直す。 =1/12m(n+1) [1],[2] から Sn= (-1)"+1 -n(n+1) (*) (*) [1] [2] のS” の式は 符号が異なるだけだから, (*)のようにまとめるこ とができる。

回答募集中 回答数: 0
数学 高校生

質問失礼します! この問題、波線部分の数え上げは書き出してみて、実験してから一般化して考える感じでしょうか? 解答を作れるようになる考え方の流れを教えて頂きたいです。🙇🏻‍♀️

147 例題 14-4 袋の中に3枚(n≧2) のカードがあり,それぞれに, 1から2nまでの整数のど れか1つが書いてある. 奇数 1, 3, 2n-1の書かれたカードは各1枚, 偶数 2, 4,..., 2n の方は各2枚である. この箱から同時に2枚のカードを無作為に選び、 そのうち最大の数字を X とする. (1) 2≦k≦2mとするとき, 確率P (X≦k) を求めよ. (2) 2≦k≦2n とするとき 確率 P (X=k) を求めよ. 【解答】 (1) 3枚のカードから2枚を取り出す方法は, K:50時 11③⑤.7. よって, 以上まとめて, P(X≦k)= 3n(3n-1) k(3k-2) 4n(3n-1) (k-1)(3k-1) 4n(3n-1) (kが奇数のとき), P(X≦k) = k(3k-2) 4n(3n-1) (kが偶数のとき)。 3nC2= (通り) 3n(3n-1) 2.4.6.8. (2) (i) が奇数のとき, P(X=k)=P(X≦k) -P (X≦k-1). 2 (i) が奇数のとき (24.6.8. k+ 以下のカードは P(X=k)= (k-1)(3k-1) (k-1)(3k-5) k-1 n(3n-1) 4n(3n-1) 4n(3n-1) k+1 奇数のカードが #x, =k-1 )が偶数のとき, 偶数のカードが1枚 P(X=k)=- k(3k-2) (k-2)(3k-4) 4n(3n-1) 4n(3n-1) k+1 計 +k-1= 3k-1 2 枚あるから, X≦kとなる場合の数は 2(k-1) n(3n-1) 3k-1.3k-3 異なる 2 14- 2 よって、31枚から (2枚取り出す。 99 (3k-1)(3k-3) P(X≦k)= 3n(3n-1).4 (3k-1)(k-1) () が偶数のとき, k以下のカードは 4n(3n-1) 奇数のカードが1枚 偶数のカードがk枚 +k=k枚あるから, X≦kとなる場合の数は 22C2= 2 148

回答募集中 回答数: 0
数学 高校生

なぜxをαと置き換えるんですか?? その数字がαであるのはなぜですか? あとα、kは実数であるから〜 のところ、kは問題文に書いてあるからわかるんですがなぜαまで実数と言い切れるんですか? 色々分かってなくてすみません😭

要 例題 43 R5 1/27× 73 00000 虚数を係数とする2次方程式 の方程式(1+fx2+(k+i)x+3+3ki-0 が実数解をもつように、実数k の値を定めよ。 また、その実数解を求めよ。 1 CHART & SOLUTION 基本 38 2次方程式の解の判別 判別式は係数が実数のときに限る DEQから求めようとするのは完全な誤り(下のINFORMATION 参照)。 実数解をとすると (1+1)q' + (k+fa+3+3ki-0 この左辺をa+bi (a, は実数)の形に変形すれば、 複素数の相等により =0.6=0αの連立方程式が得られる。 解答 方程式の実数解をαとすると 整理して (1+i)²+(k+i)a+3+3ki = 0 (a²+ka+3)+(a²+a+3k)i=0 akは実数であるから、+ka +3,+α+3kも実数。 x を代入する。 a+bi=0 の形に整理 この断り書きは重要。 2章 9 2次方程式の解と判別式 よって +ka+3=0 ① a²+a+3k=0 ② ①-② から (k-1)a-3(k-1) = 0 ゆえに よって [1] k=1のとき (k-1)(a-3)=0 1 または α=3 ① ② はともに これを満たす実数 となる。 +α+3=0 は存在しないから,不適。 [2] α=3 のとき ① ② はともに 12+3k=0 となる。 ゆえに k=-4 [1], [2] から, 求めるkの値は k=-4 実数解は INFORMATION x=3 素数の相等。 αを消去。 inf を消去すると α-24-9=0 が得られ、 因数定理(p.87 基本事項) を利用すれば解くことがで きる。 D-12-4-1-3=-11<0 ①:3'+3k+3=0 ②:3'+3+3k=0 25 2次方程式 ax2+bx+c=0 の解を判別式 D=4ac の符号によって判別できる のは a b c が実数のときに限る。 例えば,a=,b=1,c=0 のとき 2-4ac=1>0 であるが, 方程式 ix²+x=0の解 はx=0, i であり、 異なる2つの実数解をもたない (p.85 STEP UP 参照)。 PRACTICE 43° xの方程式 (1+i)x2+(k-i)x-(k-1+2i) = 0 が実数解をもつように, 実数kの値 を定めよ。 また, その実数解を求めよ。

未解決 回答数: 1