学年

教科

質問の種類

数学 高校生

右下のg( )はどうやって出たのでしょうか、、?

85 sin0, cos0 の2次式の最大·最小 戦問題 B8円 6, c は正の定数とする。0S0<; の範囲で定義された2つの関数 T 2 の=(1-/3a)sin° 0 + 2asin@cos0 +(1+/3a)cos°0, g(0) = bsinc0+bについて f(0)を a, sin20, cos20 を用いて表すと {(0) = |ア」(sin20+Vイ]cos20) +ウ] π エオ|sin(20+ )+| キ]と変形できる。よって,f(0) は カ T のとき最大値 ついて、 0= クケ コa+サ, 0= T のとき最小値口ス シ |aをとる。 セ の a(0) の最小値が0であるとき,cの値の範囲は c2 である。 このとき,さらにf(0)と g(0) の最大値と最小値がそれぞれ一致するならば ]+テコロ 小景を30 タ 3 ツ b= a= チ ナ である。 章 解答 ぶす30… (Sgol+ 1DS 2 (x-9 2log5 (1) f(0)を変形すると」 0<-S 0<-8 りし、 10~ sin20 +2a 2 1-cos20 Key 1 f(0) = (1-/3a) 上 1+ cos20 *f(0) = (sin°0+cos'0) 2 20 -ol 8-2, Key 2 =asin20 +/3 acos20 +1 = a(sin20 +/3 cos20)+1 +a·2sin0cos0 adpg +/3a(cos'0- sin' 0) と変形し,2倍角の公式 ol π +1 3 (×)ol=DS0! +&gol 62ols 2(x-9)2ol + (x8-8)2ol = 2asin(26+ 2sin0cos0 = sin20 0S0s号のとき,520+sxより一9(8-0)apl ー元よりー9 (S-8)20 cos'0- sin°0= cos20 3 3 4log42 13 S sin( 20 + -)S1 (3-3り16 40を0 ー こ る を代入してもよい。 (別 2 3 2e 六 の 1-1 (①) a のとき 最小値1-/3a a>0 より ー/3a+1< 2asin( 20 + -)+1S 2a+1 log -1 よって,f(0) は 間 。 π のとき 最大値 2a+1 12 π π 20+ 3 すなわち 0= 2 TZ 4 -π すなわち 0 = 3 π π 20+ 3 2 「6sine0+b=! (2) g(0) = 0 のとき |6>0 より 020の範囲で sincl == -1 となる最小の0の値6%は、+(81) =8 bsinc0 = ーb 6onc0=1-b Sinc0: sincl = -1 8+ =8+ b 3 3元 -π となり 2 bo ニ c>0 より,cl。 2c boircO+b-0 π 2 よって,0S0< の範囲で g(0)の最小値が0となるとき 2 Sinc@:0 3元 T c>0 であるから, f(0)と g(0)の最大値と最小値がそれぞれ一致するとき 2a+1= 26 かつ 1-/3a=0 -1) e, - より c23 2c 2 9(0) の最大値は 3 6= 3+2/3 -sin +1) = 26 π これを解いて 10 本も ) a= 3) 6 三角関数 82

回答募集中 回答数: 0