学年

教科

質問の種類

数学 高校生

(2)なんですけど場合分けがいるのは何故ですか?イマイチピンと来ません...

3章 複素数の極形式と乗法、除法 重要 例題 96 複素数の極形式 (2) 偏角の範囲を考える 00000 次の複素数を極形式で表せ。 ただし, 偏角0 は 0≦02とする。 (1) -cosa+isina (0<a<π) 指針 (2) sina+icosa (0≦x<2) 基本 95 既に極形式で表されているように見えるが,r (cos+isin) の形ではないから極形 式ではない。 式の形に応じて 三角関数の公式を利用し、 極形式の形にする。 (1) 実部の符号 - を + にする必要があるから, cos (π0)=cose を利用。 更に 虚部の偏角を実部の偏角に合わせるために, sin(π-0)=sin0 を利用する。 (2) 実部の sin を cos に, 虚部の cos を sin にする必要があるから, COS cos(10)=s =sino, sin()= =coso を利用する。 2 また,本間では偏角 0 の範囲に指定があり,0≦02 を満たさなければならないこと に注意。 特に (2) では, αの値によって場合分けが必要となる。 CHART 極形式r(cos+isin) の形 三角関数の公式を利用 (1) 絶対値は また √(-cosa)+(sina)=1 -cosa+isina=cos (π-a)+isin (-a) ① cos(π-0)=-cos sin(-6)=sin 0 165 0<a<πより,0<π-α<πであるから,①は求める極偏角の条件を満たすかど 形式である。 (2) 絶対値は また ここで π √(sina)2 + (cosa)2=1 うか確認する。 sinaticosa=cos(n-a)+isin(ハーム) cos (10)-sine sin(-)-cos 0 O≦a≦のとき,Osus4 であるから,求め≦α<2mから 極形式は 2 sina+icos a=cos(-a)+isin(-a) -*-* ゆえに, αの値の範囲に よって場合分け。 π <<2のとき、偏 π <α<2のとき 2 2 2 2 各辺に2を加えると, π V 2 52 <2であり 5 角が0以上2 未満の範 囲に含まれていないから, 偏角に2を加えて調整 する。 96 cos(-a)= cos(-a), 2 2 5 )200) 2 sin(-)-sin(-a) 2 よって、求める極形式は s(-a)+isin (-a) sinaticosa=cos なお cOS (+2nz)=cOS sin(+2nz)=sin [n は整数] 次の複素数を極形式で表せ。 ただし, 偏角は 0≦02 とする。 (1)-cosa-isina (0<α<л) D(2) sina-icosa (0≤a<2л) (1) re

未解決 回答数: 0
数学 高校生

この問題の1番について、 a+5、a +3を2つの自然数 を用いて表していると思うのですが、なぜ文字は自然数 K のみだけ、とかじゃだめなんでしょうか?

例題 108 倍数 互いに素に関する証明 今は自然数とする。 α+5は4の倍数であり, α+3は6の倍数であると α+9は12の倍数であることを証明せよ。 自然数αに対し, a と α+1は互いに素であることを証明せよ。 CHART & SOLUTION 倍数である, 互いに素であることの証明 p.426 427 基本事項 1.5 を自然数として α+5=4m, a+3=6nと表される。そして、「αの倍数かつ の倍数ならば ともの最小公倍数の倍数」であることを利用する。 また、aとbが互いに素のとき 「akが6の倍数ならば、kはもの倍数」であることを 利用してもよい ( 参照)。 (2) 互いに素である 最大公約数が1 最大公約数をg とおいて,g=1であることを証明すればよい。 自然数 A,Bについて AB=1 A=B=1 を利用する。 解答 なぜ 同じ買だめ? 経と同じ異だめ? (1)+5,α+3 は,自然数 m n を用いて a+5=4m, a+3=6n と表される。 a+9=(a+5)+4=4m+4=4(m+1) ① a+9=(a+3)+6=6n+6=6(n+1) ② よって、 ① より α+9 は4の倍数であり, ② よりα+9 は 6 の倍数でもある。 したがって, α+9は4と6の最小公倍数12の倍数である Tisan's 割る数が 4章 互いにか13 素数とは 別解 (1) ① ② から 4(m+1)=6(n+1) すなわち 2(m+1=3(n+1) 2と3は広いに素である から m+1は3の倍数 である。 よって m+1=3k(kは自然数) と表される。ゆえに a+9=4(m+1) 数と倍数

回答募集中 回答数: 0