学年

教科

質問の種類

数学 高校生

(2)についてです。 回答には相加相乗平均が用いられていますが、相加相乗平均でわかるのはtの取りうる値が2以上に限定されることであって、tが2以上のすべての実数をとりうるかどうかはわからないのと思います。そのため、(2)の回答に用いることはできないと私は考えたのですが、どう... 続きを読む

316 第5章 指数関数と対数関数 Think 例題160 指数関数の最大・最小 (2) **** 関数 y=(4*+4¯*)-2a (2'+2) +1 について、 次の問いに答えよ. Q(1)2+2=t とおいて,yをtの関数で表せ. (2)のとり得る値の範囲を求めよ. ○(3)yの最小値が10のとき αの値を求めよ. 考え方 (1) = (2')', 4'=(2x)より, a+b= (a+b)-2ab を利用して変形する. (2) 相加平均相乗平均の関係を利用する。」 (3)(1)(2)より与えられた関数は, tについての2次関数になって いる. との関係 (a>0, x:実数) axXa=1 (相加平均) ≧ (相乗平均) a+bzab (a>06>0 のとき) 2 解合 (1) 2'+2x=t のとき, 4'+4¯*= (2*)+(2^*)2 =(2'+2x)2-2.2.2 =f-2 より y=f-2-2at+1=t-2at-1 (2)20,20 より 相加平均・相乗平均の関係 から、 2*+2*2/2.2* =2 等号は, 2*2*より、x=-xつまり、x=0 の とき成り立つ. よって, tの値の範囲は, (3) (1)より, (i) a <2 のとき a+b2=(a+b)2-2. 2.2=1 相加平均・相乗平均の 関係を利用する. a+b 2 -√ab より,a+b2ab 軸は直線t=α より 軸と区間 t≧2 の位 関係から場合分けを る. (i) (i) のときのグラ は下の図のように t≧2 y=f-2at-1=(t-α)-α-1 ...... ① t=2 のとき, yは最小値10 をとる. 13 2-2a・2-1=-10 より a= 4 これは, a<2を満たさない. (ii) α≧2 のとき (i) t=α のとき,y は最小値10 をとる. したがって, ① より - a²-1=-10 2=9 より, a=±3 1 a 2 a≧2より, a=3 よって, (i), (ii)より 求めるαの値は, a=3 a 最小 練習 [160] xは実数とする。このとき、関数y=- 10 (3*+3)-(9+9)-3 3 *** そのときのxの値を求めよ. "最小 の最 (高島

解決済み 回答数: 2
数学 高校生

相加平均相乗平均の問題です 最初になにをしてるんですか?

(7) 件の確認が必要である平均)(相乗平均)を利用。 人にように定数を補い, (相加平均) ≧ (相乗平均)を利用。 CHART & SOLUTION 基本 積が定数である正の数の和の最小値 (相加平均) ≧ (相乗平均)を利用 吉日と白の大小関係 2 から a+bの最小値を求めることができる。 CH 式の 2式 べる を求 基本 例題 31 相加平均・相乗平均を利用する最小値 (1)x>0 のとき, x+-の最小値を求めよ。 9 証明せよ。また、毎号 基本 (2)x>0 のとき, x+ 9 x+2 の最小値を求めよ。 0< p.42 基本事項 5. a+bz√ab において, ab=k(一定)の関係が成り立 → 解答 (1)x>0, 20であるから,相加平均と相乗平均の大小関 ↓ 相加率) 9 係により 9 相加平均と相乗 大小関係を利用する この x+2 X・ =2.3=6 XC x 解答 等号が成り立つのはx=- 9 明 すなわち x=3のとき。 9 x ← x=- よって、x=3で最小値6をとる。 を明示する。 =から=9 x x>0 であるからょ a+ 0<d よっ 20 (2)x+ 9 x+2 =x+2+ 9 x+2 また -2 x>0より x+2>0, 9 x+2 ->0 であるから, 相加平均と相 2つの項の積が足 なるように,x+20 を作る。 した であ [1] 乗平均の大小関係により [2] x+2+ ≧2. x+2 =2.3=6 x+2 x+2 ゆえに9x+29_2 x+2 -2≧6-2=4式の値が4になるよ M 値が存在する [3] 等号が成り立つのは x+2= 9 のとき。 x+2 このとき (x+2)2=9 とを必ず確認する。 立号成立は 9 した x+2>0 であるから x+2=3 (2) x>1 のとき, x+ 1 の最小値を求めよ。 x-1 したがって, x=1で最小値4をとる。のときされ PRACTICE 31実の方 3 b,c,dは正の数と (1) x>0 のとき, x+ 16 次の不等式が成り立つことを証明せよめ の最小値を求めよ。 北平米日(日) ORA 2- 5-0 ゆえに x+2= x+2 96 x=1 かつ x+2+- x+2 2(x+2)=6 として求めてもよい

未解決 回答数: 0