学年

教科

質問の種類

数学 高校生

四角7番は(1)が分かりません、分からない問題多すぎて困ってます、、お願いします助けてください、、 🙇🏻‍♀️🙇‍♀️🙇🏼‍♀️😵‍💫

右の表は、25人の生徒のテストの 度数分布表である。 (1)このデータの平均値のとり得る範囲を求めよ。 (2) 60点以上69点以下の階級に含まれる値が次のようであ あるとき、全体のデータの中央値を求めよ。 68 63 66 62 68 63 67 65 得点の階級(点) 度数 40 以上 49 以下 2 50 60 ~ 22 70 80 2 628 59 69 79 89 587325 25 計 8 ある高校で,エコ活動としてペットボトルのキャップを集めている。 次のデータは, 1か 月ごとに集まったキャップの重量を半年間記録したものである。 3.2 1.2 2.3 2.0 2.7 2.4 (単位はkg) (1) 中央値と平均値を求めよ。 1.2) 2.0.2.3. 2.4.2.7.3.2 .2.3.2.4.2 (2)上記の6個の数値のうち1個が誤りであることがわかった。 正しい数値に基づく中央 値と平均値は,それぞれ2.55kg 2.4kgであるという。 誤っている数値を選び, 正し い数値を求めよ。 9 次のデータは,ある8店舗での1kgあたりのみかんの価格である。 ただし, a の値は 0 以上の整数である。 0 525 550 498 560 550 555 500 (単位は円) (1)αの値がわからないとき,このデータの中央値として何通りの値があり得るか。 このデータの平均値が535円であるとき,このデータの中央値を求めよ。

未解決 回答数: 1
数学 高校生

黄色マーカーのところで、 a=1のとき、なぜ解なしになるんですか?

201 00 て,次の 基本101 2次 なお,2 別するた している。 重要 例題 120 連立2次不等式が整数解をもつ条件 xについての不等式xー (a+1)x+a<0,3x²+2x-1>0 を同時に満たす整数x がちょうど3つ存在するような定数 αの値の範囲を求めよ。 指針 [摂南大 基本 37 117 1 まず,不等式を解く。不等式の左辺を見ると,2つとも因数分解ができそう。 なお,x2-(a+1)x+α <0)は文字αを含むから,αの値によって場合を分ける。 数直線を利用して、題意の3つの整数を見定めての条件を求める。 CHART 連立不等式 解のまとめは数直線 x²-(a+1)x+a<0 を解くと 解答 a<1のとき a<x<1> α=1のとき 解なし α>1のとき 1<x<a (x-a)(x-1)<0 から ① 3x2+2x-1>0を解くと (x+1)(3x-1)>0から <x x<-1, 1/3 <3 ② ①,②を同時に満たす整数xがちょうど3つ存在するの は α <1 または α >1 3章 <a=1のとき, 不等式は 13 (x-1)20 これを満たす実数xは 存在しない。 実数 A に対し A'≧0 は常に成立。 A'≦0 なら A=0 A2<0 は 不成立。 2次不等式 の場合である。 [1] α <1 のとき [1] -51-4-3-2-1 01 X 3つの整数xは x=-4, -3, 2 a よって -5≦a<-4 a [2] α>1のとき a 24 3つの整数xは x=2,3,4 よって 4 <a≦5 [2]-2 13 〒5 6 • -101 2 3 4 1 a 3 [1], [2] から, 求める α の値の範囲は -5≦a<-4, 4<a≦5 X <-5<a<-4としないよ うに注意する。 a<x<-1の範囲に整数 3つが存在すればよいか ら, a=-5のとき, -5<x<-1となり条件 を満たす。 [2]のα=5のときも同 様。

未解決 回答数: 0
数学 高校生

この問題でBの家とCの家に帽子を忘れるときに3/4をかけるのは何故ですか。教えてください。

242 第5章確率 練習問題 11 あるセールスマンは, 家を訪問すると の確率で帽子を忘れてくる. 4 このセールスマンが帽子をかぶって出かけ,A,B,Cの3つの家をこの 順に訪問して帰ってきたところ、帽子を3つの家のどこかに忘れてきたこ とに気がついた.この人がAの家に帽子を忘れた確率を求めよ. 精講 事後の確率の有名問題です。単に「Aの家に帽子を忘れてきた」確 率であれば, です.しかし,このセールスマンが「どこかに帽 4 子を置き忘れてきた」という情報を知ってしまったことにより,その確率は変 わってきます.ここでも、面積図の考え方がとても有効です. セールスマンが Aの家に帽子を忘れる確率は 1 4 解答 Bの家に帽子を忘れる確率は 31 3 -X-= 44 16 Cの家に帽子を忘れる確率は 3 3 1 9 x-x A どこかで帽子を忘れる Aで忘れる 1 ① Cで忘れる 忘94 64 4 4 4 64 3 忘れない これを面積図にまとめると, 右図のよう になる. 「どこかに帽子を忘れてきた」という条 件のもとで「Aの家に帽子を忘れてきた」 確率は,図の「青枠」 の中に占める 「水色 の網かけ部分」の面積比である. よって、求める確率は 1 4 1 + 4 316 9 + 16 16 16+12+9 37 64 13 Bで忘れる 31 |1| (3

未解決 回答数: 1
数学 高校生

数IAの演習問題のテストが全く分かりません (2)から苦戦しています なぜy=(x-160)(400-x)-6000になるのか解説よろしくお願いします🙇!!

5 花子さんと太郎さんのクラスでは,文化祭でたこ焼き店を出店することになった。 2人は 1皿あたりの価格をいくらにするかを検討している。 次の表は、過去の文化祭でのたこ焼 き店の売り上げデータから, 1皿あたりの価格と売り上げの関係をまとめたものである。 1皿あたりの価格 (円) 200 250 300 売り上げ数 (皿) 200 150 100 6 b ラ下 以下 b= (1) (1) まず, 2人は,上の表から 1皿あたりの価格が50円上がると売り上げ数が50皿減 ると考えて、売り上げ数が1皿あたりの価格の1次関数で表されると仮定した。このと き, 1皿あたりの価格をx円とおくと, 売り上げ数は アイウ -x と表される。 ① (2)次に、2人は、利益の求め方について考えた。 花子: 利益は,売り上げ金額から必要な経費を引けば求められるよ。 太郎 : 売り上げ金額は、1皿あたりの価格と売り上げの積で求まるね。 花子 : 必要な経費は,たこ焼き用器具の賃貸料と材料費の合計だね。 材料費は、売り上げ数と1皿あたりの材料費の積になるね。 2人は,次の3つの条件のもとで, 1皿あたりの価格を用いて利益を表すことにした。 (条件1) 1皿あたりの価格が円のときの売り上げ数として ①を用いる。 (条件2) 材料は、 ①により得られる売り上げ数に必要な分量だけ仕入れる。 (条件3) 1皿あたりの材料費は160円である。 たこ焼き用器具の賃貸料は6000円で ある。 材料費とたこ焼き用器具の賃貸料以外の経費はない。 利益を円とおく。yをxの式で表すと y=-x+エオカ x キx10000 である。 (3)太郎さんは利益を最大にしたいと考えた。 ②を用いて考えると, 利益が最大になる のは1皿あたりの価格がクケコ 円のときであり,そのときの利益はサシスセ円 である。 (4) 花子さんは,利益を7500円以上となるようにしつつ,できるだけ安い価格で提供し たいと考えた。 ②を用いて考えると, 利益が7500円以上となる1皿あたりの価格のう ち、最も安い価格はソタチ 円となる。 (2)

回答募集中 回答数: 0