学年

教科

質問の種類

数学 高校生

(2)の問題で、なぜ判別式がD/4になるのかわかりませんでした。その後の式の意味も理解できていないので、教えてもらえると嬉しいです。

例題 思考プロセス 題 85 2次方程式の実数解の個数 kを定数とするとき, 次の2次方程式の実数解の個数を調べよ。 (1)x2-3x+k-2=0 場合に分ける ★☆ (2)x2+2kx+k-2k+4=0 2次方程式の実数解の個数は判別式 D の符号によって決まる。 (ア) D0 異なる2つの実数解をもつ。 (イ) D = 0 ⇔ ただ1つの実数解 (重解)をもつ。 (ウ) D<0 ⇔ 実数解をもたない。 かどうかで noibA Action» 2次方程式の実数解の個数は, 判別式の符号を調べよ 解 (1) 与えられた2次方程式の判別式をDとすると D=(-3)2-4・1・(k-2)=-4k +17 17 4のとき2個入 (ア)D=-4k+17>0 すなわちくのとき 2個 17 (イ) D=-4k+17=0 すなわち k= =1のとき 1個 17 4 (ウ) D=-4k+17 < 0 すなわちん > > のとき 0 個 moito になる 定数項k-2は()を付 けて1つのものと考えて 計算する。 不等号の向きに注意する。 -4k+17> 0 -S) = -4k> -17 (2)与えられた2次方程式の判別式をDとすると2次方程式 D (ア) 24 D (イ) 4 D 4 = =k-1· (k-2k+4)=2k-4 =2k-40 すなわちん > 2 のとき 2個 =2k-4=0 すなわちん = 2 のとき 1個 これらは、 (ウ) // =2k-40 すなわちん <2のとき0個 ては 17 4 (S) +26′x+c=0 におい D =672-ac 44000 を用いてもよい。 Point .+1)

未解決 回答数: 1
数学 高校生

(3)で、なぜa=2の場合分けが必要なのかわかりませんでした。また、両辺をa(a-2)で割って、という説明の意味がわからなかったので、教えてもらえると嬉しいです。

★☆☆☆ 例題83 文字係数の方程式の★★★☆ 次のxについての方程式を解け。 (I) (1)x+(a-2)x-2a=0 (2) ax²-2x-a=0(3)dx-2ax+a=0 (2)(3)問題文では,単に 「方程式」 となっており、2次, 1次方程式とは限らない。 場合に分ける 思考プロセス (x2の係数) = 0 のとき 1次方程式を解く (2) (x2の係数) ≠0のとき 2次方程式を解く (例題 82参照) 。 いる。 -2 3 1 Action » 最高次の係数が文字のときは、0かどうかで場合分けせよ (1)x2+(a-2)x-2a=0より 例題 よって 10 x=2, -a (2) (ア) α = 0 のとき,この方程式は The これを解くと x=0 (イ) α = 0 のとき, 解の公式により (x-2)(x+a)=0x2+(a+B)x+αB = 0 exe -2x = 0 __(−1)±√(−1)-α(-a) 1±√α° + 1 x= a == +1>0より, これは解として適する。 a 最小公 て,各 fa = 0 のとき x=0 。 解) から、 SB (ア)(イ)より 1 ±√2+1 a = 0 のとき x= (3) ax-2ax+α = 0 より a(a-2)x=-a あるか - ac のとき (x+α)(x+β)=0 a = 0 のとき,与えられ た方程式は1次方程式と なる。 2次方程式 ax2+26′x+c=0 の解は x= 6' ±√b2-ac (ア) α = 0 のとき,この方程式は 0.x = 0 よって、 すべてのxで成り立つから, 解はすべての実数。 (イ) α = 2 のとき,この方程式は 0.x = -2 a = 0 の可能性があるか ら,いきなり両辺をαで 割ってはいけない。 3 章 2次関数と2次方程 この式は成り立たないから,解はない。 (S) 照。 (ウ) α = 0, 2 のとき x=- 1 a-2 1 2-a Mod Job a(a-2) ≠0 より 両辺 をα(a-2) で割って a = 0 のとき (ア)~(ウ)より |a=2のとき すべての実数 解なし 09- a x= a(a-2) な 1)= 1 1 a-2 2-a a = 0, 2 のとき x= 2-a Point...文字係数で場合分けする方程式の解法 方程式の最高次の係数が文字のときは,その値が0かどうかで場合分けする。 最高次の係数が0のとき,(3)のように,解がすべての実数となる場合(不定)や、解な しとなる場合(不能)もあることに注意する。 練習 83 次のxについての方程式を解け。 C (1)x2+(3-4)x-3α = 0 ■ (2) ax2+x-a=0 (3) a²x-2=2ax-a

未解決 回答数: 1
数学 高校生

ここの単元がほんとに苦手で、赤ペンで解説を写しましたがよくわかりません。 214も215も半径を1としているのに、上の例では半径が2になるのはなぜでしょう。 また、点Pの座標ってどうやって出しているのでしょうか。根本的にわかっていませんがどうか教えてください🙏

PO ① 57 の三角比の定義 右の図において,∠AOP = 0 のとき sin = cos =* r tan 0=y x (ただし, tan 90° は定義されない) ② 180°-0の三角比(0°0≦180°) sin (180°-0)=sin 0 cos(180°-0)=-cos tan (180°-8)=-tan0 例68鈍角の三角比 150°の正弦, 余弦, 正接の値を求めよ。 ya P(x, y) A -T 0 ▼0°<< 90° のとき, POINT57で定義された三角 比は, p.92 POINT53で定 義した三角比と同じになる。 P(x,y) y 0 8 x y A T x BIS 解答 右の図で,∠AOP=150°とする。 OTI nie () 半円の半径を = 2 にとると, 点Pの座標は(√31) そこでx=-√3, y=1 として おいて P 1 150° sin 150°= = 1 r 2' cos 150°=- =√3 √√3 801 200 -3 O A r 2 2 ESI 200 (S) tan 150°= 1 x √3 √3 は60 2 1 30° √3 基本 第4章 214 180°の正弦,余弦,正接の値を求め よ! 満たすりを 180°のど。 1800 半円の半径をしにとると、 点の皆様は(-10)口 sin 180°= そこでた小4=0として COS(80° Gin: = = 0 r Tan (80 = 1. 2 for 0 0 TG) (S) □215 90°の正弦、 余弦の値を求めよ。 満たすのを求め 400 sin(180-90)=sin90° 109 (180-90%) 上の図でLA0P=90°とする 半円の半径を1にとると 点の座標は(0.1) そこで大20.9=1として、 sin90% 4=1=1 cos 90° = 14: 9:0 COS90% ORI ee 209

解決済み 回答数: 1
数学 高校生

問2のq’の式の分母に2かけてるのはどうしてですか

この日, もつことになる。 がαより引き継がれやすいと, 世代を重ねるごとに変動をしながら, Aの遺伝子頻 度が大きくなる傾向になると考えられる。 153 問1 BB の個体: 36% Bbの個体: 48% bbの個体: 16% 問2 0.29 問3 41個体 Key Point 自然選択が働くと、特定の遺伝子型の個体が取り除かれ,ハーディー・ワインベルグの法 則は成り立たない。 解説 問1 遺伝子Bの遺伝子頻度をか. 遺伝子の頻度をg (p+g=1) とすると,この集団に おける遺伝子型の頻度は次の式で求められる。な (pB+qb)²= p²BB+2pqBb+q²bb とは いる。 よって, 遺伝子型 BB の個体の割合は2=0.62=0.36, 遺伝子型 Bb の個体の割合は2pg=2×0.6×0.4=0.48, 遺伝子型 66 の個体の割合は4=0.4=0.16 となる。 問2bbの個体がすべて取り除かれた後の, 対立遺伝子の遺伝子頻度を′とすると. BBの個体の割合が 0.36, Bb の個体の割合が 0.48 であったので(sp+Mo 0.48 g′'= (0.36 +0.48) ×2 0.48 0.84×2 =0.285≒0.29 となる。 変化後の遺伝子頻度で自由交配が行われれば, ハーディー・ワインベルグの法則から次 世代における遺伝子頻度は変わらないので,bの遺伝子頻度は0.29である。 問3 対立遺伝子の遺伝子頻度が0.29 なので, bb が取り除かれた後の対立遺伝子Bの 遺伝子頻度かは、 al p'=1-0.29=0.71 st Bb の個体の割合は2pg′=2×0.71×0.29=0.4118 ≒ 0.41 総個体数が100個体であれば,B6の個体数は100×0.41=41)

回答募集中 回答数: 0
数学 高校生

赤い線が引いてあるところで、xで割るのにx=0の時と0でない時で場合分けしていないのはなぜですか?教えてください!

例題 221 定積分と すべての実数xについて, 等式 xf(x)=x+2 f(x) を求めよ。 思考プロセス « Re Action 上端 (下端)が変数の定積分は, 定理の利用 y=f(x) とおくと ★★☆☆ +2 ff(t) dt を満たす関数 af*f(t)dt=f(x) を利用せよ 1910 Go Ah 微分方程 でその現 探究 例題 薬を血 さで代 をxで微分する + xf'(x) =1+2f(x)⇒y+xy'=1+2y f(x) し、 微分方程式 にx=1 を代入 1・f(1)=1+2ff(t)dt 0 () iA 解 xf(x) = x+2 2* ƒ (t)dt ... ..① とおく。 163 よって, ②より 両辺を積分すると=fa ①の両辺をxで微分するとf(x)+xf'(x) =1+2f(x) dy y = f(x) とおくと x =y+1 dx ... ② 関数 f(x) はすべてのxについて定義されており, 定数関数 f(x) = -1 は等式① を満たさないから, x(y+1) ≠0 としてよい。 1 dy 1 y+1dx x 両辺をxで微分して微分 方程式をつくる。 dx f* f (t)dt = f(x) リ Ac 関数 f(x) = -1 のと (笑)き、①の左辺は x 右辺は 2∫(-1)dt 脚生 (1) 思考プロセス (1) If (2) はっ 血中 [条 条件 x+2 log|y+1| = log|x|+Ci =x-2(x-1) =-x+2 これより |y+1| = elog|x|+C1 = eCielog|x| = となり, f(x)=-1 は ① を満たさない。 よって y=±ex-1 C ここで,C=±e とおくと y=Cx-1(C≠0)ol 例題 1=C・1-1 より C = 2 したがって,求める関数 f(x) は f(x) =2x-1 Point... 微分方程式と初期条件 B4 また, ① に x = 1 を代入すると f(1) =1であるから, らf(1)=1 ff(t)dt = 0 であるか t (2) t 微分方程式の一般解は, 任意定数を含む 曲線群を表すが、これらの曲線のうち 点(x1, 21) を通るもの、すなわち x= x1 のとき y = yı 3) という条件を満たす特殊解は,いくつかに限定される。 微分方程式に対するこのような 条件を初期条件という。 ■ 221 すべての実数xについて L チャレンジ (7)

解決済み 回答数: 1
1/130