学年

教科

質問の種類

数学 高校生

数ⅠAの問題です エからがわからないです 教えてください

実戦問題 5 15分 (1)辺の長さが等しい正方形と正三角形を、1つの場で胎り合わせてできた多角形の場の はアである。 また, 辺の長さが等しい正六角形と正三角形を,1つの辺で貼り合わせ てできた多角形の辺の数はイである。 (2) 太郎さんと花子さんは,面が合同な正多角形である2つの正多面体を,1つの面で貼り 合わせてできる多面体について話している。 太郎: 例えば, 2つの正四面体を貼り合わせてできる多面体の面の数は、2つの正四 面体の面の数の和から貼り合わせた面の数を引けばよいからウだね。 花子: 他の2つの正多面体の組み合わせでも同じことがいえるのかな。 太郎 : 右の図のように, 正八面体 ABCDEF と正四 面体 ABCGを貼り合わせたとき, △ABGと △ABEは1つの平面上にあるように見える ね。 花子:確かめてみよう。 方針 △ABC の定める平面と △ABGの定める平 ふさんは、 面のなす角をα △ABCの定める平面と 太郎さん E A C 数学Ⅰ・A △ABE の定める平面のなす角をβとしたと また、き F I が成り立てば △ABGと△ABEは1つの平面上にあるといえるね。 オ 太郎 : cosa= cosẞ= ” カ [キク] ケ I であるから, が成り立つね。 同様に,4点 A, D, C, G と 4点 B, F, C, Gも1つの平面上にあるから, 正八面体と正四面体を貼り合わせたとき, 面の数はコだね。

回答募集中 回答数: 0
数学 高校生

9の(2)の問題でマーカーが引いてある式はどこから考えたのですか?

4 メジⅠⅡABC受 一方, 解が1≦x≦be y ゆえに、 15 22で、他の解は x=4 (2)与式から 2y-10+(x+3y)√2=0 x-2y-10, x+3yは有理数 あるから は無理数で あるxの2次不等式で, x2の係数がα (<0) で あるものは y=a(x-1xx-b) 01 b x-2y-10=0, x+3y=0 これを解いて x=6, y=-2 すなわち (3) 与式から+3-2xi=1-3y+(3+y)i 3,2x, 1-3y, 3+y は実数であるから x2+3=1-3y ...... ① -2x=3+y a(x-1)(x-b)≥0 ax2-(ab+a)x + ab≧0 ② ①②の係数を比較すると 8 -(ab+a)=' ...... ② ②から y=-2x-3 ...... 3 ①に代入して整理すると x2-6x-7=0 これを解くと よって (x+1)(x-7)=0 工 ゆえに x=-1,7 ③から x=1のとき y=-1 ab=-2 2 a=-= -3 b=3 これはa<0 を満たす。ナスリー 別解 (①を導くところまで同じ) 8 F(x)=ax2+2/3x-2 とおく。 ① を満たすxの範囲が1≦x≦b であるとき, x=1は2次方程式 F(x)=0の解の1つである。 よって, F(1) = 0 から 8 x=7のとき y=-17 したがって (x,y)=(-1, -1),(7,17) 9 (1) 3x-52(x+α) を解くと これを満たす最大の整数 xが8であるための条件 は 8<2a+59 x<2a+5 a+-2=0 2 すなわち a=- 12/3(これはa<0を満たす) すなわち 32a≦4 よって多く 2a+59 3 X 8 このときは12/22 2023x-220 <a≤2 整理して (2) [1] k=0のとき すなわち 不等式は1>0 となり, すべての実数xについ て成り立つ。 ゆえに x2-4x+3≤0 (x-3)(x-1)≦O 1≦x≦3 [2] 08-11 したがって a=-- 2 3' b=3 不等式が常に成り立つ条件は, (左辺 = 0 の判 別式をDとすると k0 ...... ① かつ D0 Jei ここで D=(3k)2-4k(k+1)=k(5k-4) D<0 から 5k-4) <0 よってok ② 4 ①,②からok</ 4 以上から (3) f(x) ≥9(x)+5 ゆずに 10 (1) x3= (x2+2x+4)(x-2)+8 =8 2 x²+1 = (x+1)−3·x±√(x++) 心 =33-3.3=18, 2.x2. **+=(+)-2-x² +1 = (x²+ ±17)² - 2. x². x4 1 -{(x+1)-2-x-12-2 =(32-2)2-2=72-2=47 x+2x+2=1/2x+4 (3)展開式の一般項は すなわち x + fx-220① 3C, (2x2)-(1)=C, 27—1 x 27—1)-

未解決 回答数: 1
1/299