学年

教科

質問の種類

数学 高校生

数2の質問です! (2)でなぜ23は答えにならないのかを 分かりやすく教えてほしいです!! よろしくおねがいします🙇🏻‍♀️՞

log102=0.3010, 10g103=0. (1) 232 は何桁の整数か。 (2)3”が12桁の整数となる自然数nの値をすべて求めよ。 50 (3) (2) は小数第何位に初めて0でない数字が現れるか。 CHART & SOLUTION 整数の桁数, 小数首位 常用対数の値を利用 (1) Nが桁の整数 - →10-1≦N<10"⇔n-1≦10g 10N <n logo2=0.3010 を用いて, 10g10232 の値を求める。 20 10'≦3"<1012⇔ 11≦nlog103 <12 (2)3" が 12桁の整数 (3) Nの小数首位がn位 ->> ≤ 10" 10" ≤N<--n≤log₁N<−n+1 2\50 -n≤log10 <-n+1 を満たす自然数n を求める。 3 解答 244 基本事項 5 (1)10g10232=3210g102=32×0.3010=9.632 常用対数の値を求める。 よって 9<log10 232 <10 ゆえに 10°2321010 ←log1010° <logio232 したがって, 232 は10桁の整数である。 <log 101010 (2)3" が 12桁の整数であるとき 101131012 tl よって 11≦nlog103 <12 各辺の常用対数をとる。 大 ゆえに 11≦0.4771xn<12 logx23 ゴールド 11 12 よって ≤n<- 0.4771 0.4771 ◆各辺を 0.4771 (=10g103) で割る。 すなわち 23.0...≦x<25.1・・・ nは自然数であるから n=24,25 吟味。nは自然観 (3)10g10 (2) O 2\50 2 =50 log 10 = =50(10g10 2-10g103) 常用対数の値を求める。 =50×(0.3010-0.4771)=-8.805 50 23 よって ゆえに -9<log10(-8 2\50 10-9<(2)°<10-8 したがって, 小数第9位に初めて0でない数字が現れる。 log10 10-<logi <logio10 sarpe isar 70-3)-

解決済み 回答数: 1
数学 高校生

19の(2)の問題で、もし、分ける部屋が区別のつかない3つの部屋なら、3!で割る で合ってますか??

8889 例題 19 重複順列 00000 (1) 0, 1,2,3の4種類の数字を用いて, 3桁以下の正の整数は何個作れるか。 ただし,同じ数字を繰り返し用いてもよいものとする。 (2)7人を,2つの部屋 A, B に入れる方法は何通りあるか。 また, 区別をし ない2つの部屋に入れる方法は何通りあるか。 ただし, それぞれの部屋に は少なくとも1人は入れるものとする。 CHART & THINKING 1章 p.279 基本事項 3. 基本14 2 順列 重複順列 n™ (i) 数字を並べてできる整数 各桁の数字の条件に注目 最高位に0は使えないことに注意しよう。 0 以外の 4個から重複を許し 3通り て2個取って並べる 3桁 2桁 1桁, それぞれの場合に分けて考えよう。 (2) 区別をなくす場合 同じものは何通りあるか考える →4通り (前半) まず, 空の部屋があってもよいとして、後で空になる場合を除く。 (後半) 区別をなくすと同じ入れ方になるものは、例えば、次のような2通りずつある (=「ペア」で現れる)ことに注意しよう。 A B A B 例 と 1 2 3 4 5 6 7 567 1234 じゃない。 (1) 3桁の整数は, 百の位の数字が0以外であるから 3×4=48 (個) 2桁の整数は 3×4=12 (個), 1桁の整数は 3個 よって, 3桁以下の正の整数は 48+12+3=63 (個) 2桁の整数は百の位の数字が 0, 1桁の整数は百と十 の位の数字が 0 とすると, 3桁以下の整数は 43個 (別解 000 になる場合を除いて 43-1=63 (個) (2) 空の部屋があってもよいものとして7人をA,Bの部屋 に入れると,その方法は 27=128 (通り) 一方の部屋が空になる場合を除くと 128-2=126 (通り) A,Bの区別をなくすと 126-263 (通り) 百の位の数字の選び方 は0以外の3通りで、 十 の位、一の位は4種類の 数字のどれでもよい。 例えば 012 2桁の整数12 003...... 1桁の整数3 W 異なる2個から重複を許 して7個取り出して並 べる順列の総数と同じ。 区別をなくすと、 一致す る場合がそれぞれ2通 りずつある。 PRACTICE 193 (1) 0, 1,2,3,4,5の6種類の数字を用いて 4桁以下の正の整数は何個作れるか。 ただし、同じ数字を繰り返し用いてもよい。 (2) 9人を, 区別をしない2つの部屋に入れる方法は何通りあるか。 ただし, それぞ れの部屋には少なくとも1人は入れるものとする。

解決済み 回答数: 1
1/5