学年

教科

質問の種類

数学 高校生

解法は大体あっていたのですが、回答5〜7行目においてxの範囲を出す理由がわかりません。回答よろしくお願いします。

基本 例題 118 2次不等式と文章題 0000 立方体Aがある。 A を縦に1cm縮め, 横に2cm縮め,高さを4cm伸ばし直 方体Bを作る。 また, A を縦に1cm伸ばし, 横に2cm 伸ばし, 高さを2cm 縮 めた直方体を作る。 Aの体積が,Bの体積より大きいがCの体積よりは大き くならないとき,Aの1辺の長さの範囲を求めよ。 指針 ①大小関係を見つけて不等式で表す 不等式の文章題では,特に,次のことがポイントになる。 ②解の検討 基本117 まず、立方体Aの1辺の長さをxcmとして(変数の選定),直方体B,Cの辺の長さ それぞれxで表す。そして、体積に関する条件から不等式を作る。 199 なお、xの変域に注意。 CHART 文章題題意を式に表す 表しやすいように変数を選ぶ 変域に注意 3 3章 立方体Aの1辺の長さをxcmとする。 2 解答 直方体B, 直方体Cの縦, 横, 高さはそれぞれ 直方体B: (x-1)cm, 不 (x-2)cm, (x+4)cm 直方体C: (x+1)cm, (x+2)cm, (x-2) cm 各立体の辺の長さは正で,各辺の中で最も短いものは 02 (8-5)( (x-2)cm であるから x-2>0 すなわち x 2. ① ...... (Bの体積) < (Aの体積) ≧ (Cの体積)の条件から (x-1)(x-2)(x+4)<x≦(x+1)(x+2)(x-2) x3+x2-10x+8<x≦x'+x-4-4... (*) ゆえに よって x²-10x+8<0. ... ****** xの変域を調べる。 2005,0 Jeb PはQより大きくない を不等式で表すと P≦Q 等号がつくことに注意。 ②かつx-4x-4≧0 ③ (*)はどの項が消えて x²-10x+8=0 の解は x=5±√17 ゆえに、②の解は 5-√17 <x<5+ √17 x2-4x4=0の解は よって、③の解は ④ x=2±2√2 x²-10x+8<0≦x2-4x-4 と同じ。 また, P<Q P<Q≦R⇔ Q≤R x≦2-2√22+2√2≦x ①, ④ ⑤の共通範囲は 2+2√2≦x<5 + √17 以上から、立方体Aの1辺の長さは ...... ⑤ 2-2√2 2 2+2√2 5+√17 x 2+2√2cm以上5+√17cm 未満 5-√17

未解決 回答数: 1
数学 高校生

マーカーの部分を教えてください

08 基本 例題 65 最大・最小の文章題 (2) 0000 座標平面上で、点Pは原点Oを出発して、x軸上を毎秒1の速さで点(6 まで進み、点Qは点Pと同時に点(一般)を出発して、毎秒1の速さで 0まで進む。この間にP,Q間の距離が最小となるのは出発してから何 か。 また、その最小の距離を求めよ。 CHART SOLUTION 解答 ✓f(x) の最大・最小はf(x)の最大・最小を考える 基本 t秒後のP,Q間の距離をd とすると, 三平方の定理からd=f(t) の形にな る。ここでd> 0 であるから,d=f(t)が最小のときdも最小となる。 出発してからt秒後のP, Q 間の距離 を dとする。 P, Qは6秒後にそれぞ れ点 (6,0,0,0)に達するから 0≤t≤6 ...... ① このとき, OP=t, OQ=6-t である 6- TUAN JS x ◆ tのとりうる値の範囲 点Qのy座標は t-6 から, 三平方の定理により -6 d=t+(6-t)2=2t-12t+36 =2(t-3)2+18 よって、①の範囲の tについて, d2 は t=3で最小値18 をと る。 d> 0 であるから,このときも最小となる。 ゆえに、3秒後にP, Q間の距離は最小になり、 最小の距離は 18=3√2 である。 ◆軸t=3は①の範囲内 この断りは重要! 81-38 INFORMATIONdの大小はdの大小から らdが最小のときも最小に 右のグラフから ずその最小値を求めている。これはd>0でdが恋 例題では,d=√2+62の根号内のα+62 を取り出して,ま y Lv=5

未解決 回答数: 1
1/62