数学
高校生

マーカーの部分を教えてください

08 基本 例題 65 最大・最小の文章題 (2) 0000 座標平面上で、点Pは原点Oを出発して、x軸上を毎秒1の速さで点(6 まで進み、点Qは点Pと同時に点(一般)を出発して、毎秒1の速さで 0まで進む。この間にP,Q間の距離が最小となるのは出発してから何 か。 また、その最小の距離を求めよ。 CHART SOLUTION 解答 ✓f(x) の最大・最小はf(x)の最大・最小を考える 基本 t秒後のP,Q間の距離をd とすると, 三平方の定理からd=f(t) の形にな る。ここでd> 0 であるから,d=f(t)が最小のときdも最小となる。 出発してからt秒後のP, Q 間の距離 を dとする。 P, Qは6秒後にそれぞ れ点 (6,0,0,0)に達するから 0≤t≤6 ...... ① このとき, OP=t, OQ=6-t である 6- TUAN JS x ◆ tのとりうる値の範囲 点Qのy座標は t-6 から, 三平方の定理により -6 d=t+(6-t)2=2t-12t+36 =2(t-3)2+18 よって、①の範囲の tについて, d2 は t=3で最小値18 をと る。 d> 0 であるから,このときも最小となる。 ゆえに、3秒後にP, Q間の距離は最小になり、 最小の距離は 18=3√2 である。 ◆軸t=3は①の範囲内 この断りは重要! 81-38 INFORMATIONdの大小はdの大小から らdが最小のときも最小に 右のグラフから ずその最小値を求めている。これはd>0でdが恋 例題では,d=√2+62の根号内のα+62 を取り出して,ま y Lv=5

回答

その上のところでは、d²についてのことを記載してます。
でも求めるのはdの最小値です。
だから、d²が最小なら、そのときdが最小となることを断っておく必要があります。
dが正の値なら、それが言えるので、マーカーのように記載してます。

かき

下の方に、dの大小はd²の大小から、というのが見えますが、そこに詳しく書いてそうです。

この回答にコメントする
疑問は解決しましたか?

この質問を見ている人は
こちらの質問も見ています😉