学年

教科

質問の種類

英語 高校生

対数関数の問題です。 194例題についてですが、最後実数解の個数が3個4個になっている理由がわかりません。y=aとy=-t2+2tの共有点の個数=実数解の個数だと思っていたのですが、

000 演習 例題 194 対数方程式の解の個数 の解をも 本女子大] 基本173 なるとの る。 よい。 00000 aは定数とする。 xの方程式{log2(x2+√2)}-210g2(x2+√2) +α=0 の実数 解の個数を求めよ。 指針 前ページの演習例題 193 同様, おき換えにより, 2次方程式の問題に直す。 変数のおき換え 範囲に注意 log2(x+√2)=t とおくと, 方程式は t2-2t+α=0 ...... (*) 基本183 22 から, tの値の範囲を求め, その範囲におけるtの方程式 (*)の解の個 数を調べる。 それには, p.239 重要例題 149 と同様, グラフを利用する。 なお、10g2(x2+√2)=t における x と tの対応に注意する。 log2(x2+√2)=t t2-2t+α=0 ① とおくと, 方程式は より,x2+√√2 であるから log2(x2+√2) log2√2 y=f(t) したがって ② また、①を満たすx の個数は,次のようになる。 = 1/12 のとき x=0の1個, 311 20 t -2)²+5a-10 11/23のときx>0であるから -2t+α=0から 2個 -t2+2t=a x2+√22より x=2√2 であるから 1/1/2のとき x=0 t= 11/21のときx>0 よってx=±√2-√2 y↑ よって、②の範囲における, 1 放物線y=-t+ 2t と直線y=a 3-- y=a <直線y=α を上下に動か 4 の共有点の座標に注意して, a して共有点の個数を調 べる。 方程式の実数解の個数を調べると, 01 1 32 t 2 2 a>1のとき0個; 5a+6 3 a=1, a<- のとき2個; 共有点なし。 11/23 である共有点1個 3 る。 4 a=2のとき3個; 3 <a<1のとき4個 2 11/23 である共有点2個。 つの実数解をも a. 6は定数とする。 xの方程式 (10g2(x2) -alog2(x+1)+a+b= 0 が異なる 2つの実数解をもつような点 (a, b) 全体のを,座標平面上に図示せよ。 p.312 EX 125 5章 33 関連発展問題 城 に

回答募集中 回答数: 0
英語 高校生

式と曲線の問題なのですが黄色マーカーで引いた部分の説明がわからないです。教えて頂けると嬉しいです。

練習 曲線(x2+y2)3=4x2y2 の極方程式を求めよ。また,この曲線の概形をかけ。ただし,原点O を 179 極, x軸の正の部分を始線とする。 x=rcose,y=rsin0, x2+y2=2を方程式に代入すると よって ゆえに re-rsin^20=0 (2)=4(rcose) (rsin0)2 r(r+sin20)(r-sin20)=0 r=0 または r = sin 20 またはr=-sin20 よって ここで,r=-sin20から -r=sin{2(0+z)} 点(r, 0) と点(-r, 0+π) は同じ点を表すから, r=sin20と r-sin 20 は同値である。 ←2sincos0=sin 20 X3 また, 曲線 r=sin20は極を通る。 したがって, 求める極方程式は 88 r=sin20 ←0=0のとき 次に,f(x,y)=(x2+y2)-4x2y2 とすると, 曲線の方程式は f(x, y) = 0...... ① sin 20=0 f(x, -y)=f(-x, y) =f(-x, -y)=f(x, y) であるから, 曲線はx軸, y 軸, 原点に関してそれぞれ対称である。 20,0≧≦として、いくつかの0の値とそれに対応する ←(-x)²=x². F(-y)²=y² AB Jet の値を求めると,次のようになる。 π 0 r 20 0 1212 1822 兀 兀 √√2 √3 63 4 1 2 1332 √3 √2 382 ・π 5 兀 ・π 12 2 0 |1|2 これをもとにして, 第1象限にお ける ① の曲線をかき, それとx 軸,y軸,原点に関して対称な曲 線もかき加えると, 曲線の概形は yA 1 24 32 右図のようになる。 (1, 0) x (0) (12/20) ←y=sin20のグラフは 直線 0=7 に関して対 称でもある。 ←図中の座標は,極座標 である。 検討 α を有理数とする とき, 極方程式 r=sina0 で表される曲 線を正葉曲線 ( バラ曲 線)という。

回答募集中 回答数: 0
1/8