学年

教科

質問の種類

地理 高校生

「家庭科 充実した生涯へ」からお聞きしたいです 《介護を担う人にはどのような課題があるか。P62を参考に130字程度で説明しない》について教えてください

1 は 加入 から 在 択 人 ン 護 柄 調査」) 22.9% 16.2% 5.4% 5 介護を担う人 介護は,だれがどのように担っているのだろうか。介護する) 要介護者と同居の人が約50%を占め、別居の家族や、 の専門家の割合が、それぞれ約10%強となっている。 事業者な また。 する人を性別にみると, 女性が約70%, 男性が約30%である。 れまでは女性が圧倒的多数を占めていたが,近年男性介護者の態 も増加している (7) さらに、近年、平約者会の使者向が胎児の使用度の水着から そうろうかいご にんにんかい 介護が必要になる年齢も高くなる傾向がある。 それにともなっ 護にあたる人の年齢も高くなり、 老老介護や認認介護と呼ばれるよ うな現象が起こっている。今後は、本部の書店で、別居家族が に介護にあたる場合も増加するだろう。同時期に子育てと介護と。 両方を担うダブルケアの課題も見過ごせない。 6 介護の社会化と介護保険制度 介護が必要となった高齢者を,家族とともに社会全体で支えて いく「介護の社会化」をめざす介護保険が,2000年から導入された その目標は,高齢者自身の自己決定の尊重であり、介護を必要とす る人が自分で必要なサービスなどを選択しつつ,自立的な日常生活 を営めるように支援する社会的なしくみである。 介護保険制度は,市区町村が保険者となり、日本に住所をもつ 40歳以上の人は被保険者として月々保険料を支払うしくみである いきほうかつえん ③ ようかいご (8)。サービスを受けるには, 市区町村などに申請し要介護認定を 受ける。 要支援と認定された場合は,地域包括支援センターととも に介護予防プランを立て介護予防サービスを利用する。 要介護と認 定された場合は,介護支援専門員(ケアマネジャー) とケアプラン を立て介護サービスを利用する。 介護を必要とする高齢者本人、家 族もまじえて本人の希望をできるだけかなえるよう協議がおこなわ れる。 サービスを受ける際には費用の1~3割を負担する。 かいごぼう 0 近年は介護予防に重点が置かれるようになっており, 体力をつけ 口と歯の健康を守る, 健康を保つ食事の工夫など、できる限り 介護を必要としない状態を保つ対策が展開されている。 7 高齢 大事で ない。 のな す大 介護 性が P に おこなう試験に合格し、所定の実務研修を終了 ケアプラン(介護サービス利用計画の作成 支援専門員 都道府県知事指定の スの調整などをおこなう。

回答募集中 回答数: 0
数学 高校生

2番わかりません

3辺の長さが3, 4, xである三角形について、 次の問いに答えよ。 xのとり得る値の範囲を求めよ. この三角形が鋭角三角形となるようなxの値の範囲を求めよ。 [3+4>x x+3>4 【解答 (1) 3辺の長さが3,4,xの三角形が存在する条件は、 3/ APST yた三角形ができない。 三角形ができるためには, a+b> c が成り立つ必要がある。 考え方 (1) たとえば, 3辺の長さが3, 4,9では、 9 (2) 鋭角三角形となるのは,最大の角が鋭角のときである。 最長となる辺の対角が最大となるので, 4とxを比較する。 辺と角の大小関係は p.425 参照) Focus これより、 x+4>3 (2) (i) 1<x<4のとき,最大の角は長さが4の辺の対 角である.それをaとすると,α<90°となるため には, x2+32-42 2.x.3 cos a=- ->0 1<x< 7 これより これと 1<x<4 より √7<x<4 (ii) 4≦x<7のとき, 最大の角は長さがxの辺の対 角である. それをβとすると, β <90°となるため には, 32+42-x2 2・3・4 √x x2+32-40 の16 cos B=- これより, -5<x<5 これと 4≦x< 7 より , よって, (i), (ii) より, ->0 32 +42-x20 a, b,c を3辺の長さと する三角形が成立する条件 1524 4≦x<5 √7<x<5 HOL BISIDASTANY C 546506 SONG SHOW a+b>c と余弦定理 241 **** a a,b,c を3辺の長 さとするなら a>0. b>0, c>0 *** であるはずだが、こ れらは、三角形の成 立条件の3つの式か ら導かれる。 (次べ ージの Column 参照) 最大角をみるために は、場合分けが必要 一般に Aが鋭角 ⇒b²+c²>a² を用いてもよい。 b+c>ala-bl<c<a+b c+a>b cos A>06²+c²>a²C815 cos A=0b²+c²=a² Aが鋭角 Aが直角 Abcos A <0b²+c²<a²b\ Aが鈍角 <3+0 第4 0% 0<S Let And A すい 次の問いに答えよ.

回答募集中 回答数: 0
数学 高校生

フォーカスゴールドの問題なのですが、問題文の意味から分かりません。解説をお願いしたいです、、。

は、 保 Check 例題 243 互いに素な自然数の個数 力を自然数とする。(m≦nでmとnが互いに素である自然数mの個数 *** をf(n)とするとき,次の問いに答えよ. (1) f(15) を求めよ. (2) f(pg) を求めよ.ただし, b, q は異なる素数とする. (3) f(p) を求めよ。ただし、pは素数,kは自然数とする。(名古屋大・改) 考え方 (1) 15 であるから, f(15) は, 15以下の自然数で15と互いに素,つまり,3の倍 ま数でも5の倍数でもない自然数の個数を表す. (2) は異なる素数であるから、 と互いに素である自然数は,かの倍数でもgの 倍数でもない自然数である. 互いに素である自然数は,かの倍数でない自然数である。 よって (3) 解答 (1) 15=3.5 であるから, 15と互いに素でない自然数, すなわち, 3の倍数または5の倍数であり, 15以下の より、自然数は, 3, 6, 9, 12,15, 5, 10 の7個である. よって, 15 と互いに素な自然数の個数は、 150 f(15)=15-7=8 その他の 練習 1 約数と倍数 Focus 13 NE-A 実は (2) p, gは異なる素数であるから, pg と互いに素でな い自然数, すなわち, pの倍数またはαの倍数であり、 pg 以下の自然数は, pq+10+1 Dの倍数 1p,2p,.... (g-1) p, pg ⑨個 ⑨の倍数 1・g, 2g, ..., (p-1)q, pq p の1個 pg の倍数 pg より, (q+p-1) 1 0103 よって, pg と互いに素な自然数の個数は, bb. f(pq) = pq-(g+p-1)-DALS)-(6-8-S (8) = pg-p-g+1=(p-1)(g-1) (3) p, 自然数であるから、が以下の自然数はがきが 個ある. この結果は素数であるから,以下の自然数での倍数 カー1(個) 「互いに素である」の 否定 「互いに素でな 「い」を考える. このf(n) をオイラー 関数という. (p.432 Column 参照) (1)を一般的に考える. p=3,g=5としてみ ると見通しがよくなる. pq÷p=q (1) pg÷g=p(個) は全部で, したがって f(p") = pk-pk-1 ES AICI IT TO .80 (85)5√3 ST=N 、電 互いに素である自然数の個数は、補集合の考えを利用せよ SON YASSKOR LUSHAJAJ 例題243のf(n) について次の問いに答えよ.ただし, p q は異なる素数 ( ^^)とする 431 第8章

回答募集中 回答数: 0
数学 高校生

⑶で最後のpの倍数の個数を求める式がよくわかりません。

例題260 互いに素な自然数の個数 を自然数とする.m≦nでmとnが互いに素である自然数mの個数 をf(n) とするとき、 次の問いに答えよ. (1) f (15) を求めよ. (2) f (pg) を求めよ.ただし, p, g は異なる素数とする. (3) f(p) を求めよ.ただし、pは素数, kは自然数とする. (名古屋大・改) 考え方 (1) 「m≦nでmとnが互いに素である自然数mの個数をf(n) とする」とはどう いうことかを(1) の f (15) をもとにして考えてみる. f(15) はn=15 の場合であるから, ☆「m≦15 でmと15が互いに素である自然数mの個数は (15) となる。 つまり, (1)を言い換えると次のようになる. 合 (1) 15=3.5 であるから, 15と互いに素でない自然数, すなわち, 3の倍数または5の倍数であり, 15以下の 自然数は, 3,6,9,12, 15,510の7個である. よって, 15 と互いに素な自然数の個数は, f(15)=15-7=8 もつやっ魂 (2) gは異なる素数であるから、 pg と互いに素でな い自然数, すなわち, pの倍数またはgの倍数であり, 以下の自然数は, ①の倍数 10 2.⑩..... (q-1)0, HTA 教えた 「15 以下の自然数で15と互いに素である自然数はいくつあるか」 (2)(1)では,15=3・5 であった.(2)ではggは互いに素より(1)と同様にして 考えてみる. 個 ⑨の倍数 1⑨ 2.⑦ .…... (p-1) @カ@のか個 が互いに 3Mの数) ⑩9の倍数 1 SCAND り (q+p-1) 1 よって, bg と互いに素な自然数の個数は 1.2.3.....pa f(pq)=pa(g+p-1) Focus の 個 P9以下の自然数の **** = pg-p-g+1=(-1)(g-1) (3) p, kは自然数であるから, が以下の自然数は CHA (1.2.3.....PR) 個ある. pは素数であるから,以下の自然数の倍数 は全部で, pp=1個) 123 したがって, f(p")=pk-pk-1 練習 260 (g)とする. *** 「互いに素である」の 否定 「互いに素でな い」 を考える. 5 (1) を一般的に考える. p=3,g=5 としてみ ると見通しがよくなる. pg÷p=g(個) pg÷g=p(個) (1) f(77) を求めよ. (2) f (pg) = 24 となる p, g の組をすべて求め上 pg 以下の自然数 の倍数 STY 互いに素である自然数の個数は、補集合の考えを利用せよ ☆互いに素でない(1以外に共通の縞ある)もの数える 9の倍数 P9の倍数 (p.185 例題 94 参照) f(n) をオイラー関数 という. (p.538 Column 参照) ががが(-1) 例題260 の f (n) について次の問いに答えよ. ただし, p, g は異なる素数 改) 12 女 (c た C

回答募集中 回答数: 0
保健体育 高校生

この課題が出されています。書く枠も沢山あってそんなに書けません(400字くらい)お願いします🙇🏻‍♀️

いて理解する。 には,私たち自身 こと (危険予測 めには, 事故・事 二基づいて周囲の られる。 しかし 周囲の人の様 災害発生時に になることで 命を守る行動 大きな災害 よる自助 課題 下記の2つの課題をやりなさい。 自分の考えをしっかりと書くこと Column ハドン・マトリクスによる事故要因の分析 アメリカの運輸省道路交通安全局の局長であった W. ハドン博士は、事故の要因を事故の発生前、 発生 時 発生後に分けて分類するハドン・マトリクスを開 発した。 右の表は交通事故にハドン・マトリクスを当 てはめた一例である。これによって事故要因を特定し、 事故防止に役立てた。 このハドン・マトリクスは交通 事故に限らず, 様々な事故に応用されている。 考えて みよう 発生前 人的要因 飲酒 居眠り スピードの出し過ぎ 発生シートベルト非着用 発生後 連絡の遅れ。 応急手当のスキル不足 車体の整備不良 未点検 夜灯なし エアバッグ・サイドエア 狭く見通しの悪い道路 バッグ非装備 ガードレールの未設置 車体から受けた負傷 ガソリンへの引火 救急車の到着の遅れ 自分の周辺で起きた事故について, ハドン・マトリクスに当てはめて事故の発生要因とその防止法を考えて みよう。

回答募集中 回答数: 0
数学 高校生

⑵なのですが、興味本意でMP垂直ABだけを利用してAPを求めようという問題にして解きました。 それだと答えが違くなるのは普通ですか?自分の計算ミスや考え方が違いますか? ちなみにBP:PN=t:(1-t)にして解きました。 あともう一つですが、⑵のようなものに出会った場合... 続きを読む

例題 355 外心の位置ベクトル △ABCにおいて, AB=8,BC=7, CA = 5 とする。 辺ABの中点をM, 辺ACの中点をN, △ABCの外心をPとするとき、AB=1, AC=2と して、次の問いに答えよ.. 209 XOS JE (1) 内積 .1 (2) |考え方 (1) BC=AC-AB=C-1 であることを利用する. 解答 を求めよ. MP⊥AB,NP⊥AC を利用して, AP を , を用いて表せ。 (I) (2) Ap=s+tc とおいて MP・AB = 0, NP.AC=0 を計算し,s,tを求める. (1) |BCP²=|c-b³²=|c|³²-26•c+|6|² (2) 0-08 7²=52-20・C+82 より 20 AP= so+tc とおくと, MP=AP-AM=sb+tc-2b = (s-12) b + tc 20 S NP=AP-AN=sb+tc¬½c = sb + (t = 1/2 ) c MP⊥AB より, MP・AB = 0 だから, MP.AB={(s-2)6+tc}.b=(s— 2/2 ) b²+ tb •č S = 64(S-2) +20 =64s- +20t = 0 ・① 003より。 | 16s+5t=8 NP⊥AC より, NP・AC=0 だから, NP.AC= =20s +25t- ³•AČ={sb+(t—½)¢}·c=sb•ċ+(1—2 ) ¢² 1/12) = 0 (別解) AP = s + tc とおく. =0+A より, 8s+10t=5 ・ ①.②より,s=121.t=17/03 だから、AP=12/26 2/23 24 15 LXD 内積の性質より, AP・AM=4°=16, APAN=(-2)-25 ③,④より, s=i .③ APAN=(s6+tc). 12c=/1/2s62+1/21 CR +251-25 =10s + 2 4 2 14.1-13 だから、 15 24 =32s+10t=16 *** 8 M B 7 点Pは外心だから PM は ABの垂直 二等分線となる. つまり, MP⊥AB >30, MP•AB=0 内積の図形的意味 (p.586, p.628 したがって, AP・AM=(s6+tc)/12/6=1/12s16p+/12/16c Column 参照) 4 2 AP=¹16+ c 24 15 JP A N5 ① C 平面上に三 例 O.A-Bがあるとき ABIの点をPとす OP² = SONT EOB³ でできる。

回答募集中 回答数: 0
1/3