学年

教科

質問の種類

物理 高校生

(3)について Tc/Tbの意味を教えて欲しいです。(なぜこれが出てきたのか?という過程など…) (4)について なぜA→Dに要する時間がVsの速さでA→Eに要する時間と等しいのか教えて欲しいです。 また、これよりわかりやすい解説があるならば教えていただきたいです。🙇‍♀️

図のように,一定の速さ”で一様に流れる川に浮かぶ船 の運動を考える。 船は、静止している水においては一定の 速さ us (vs>u) で進み, また、瞬時に向きを自由に変えら れる。最初, 船は船着場 A にいる。 A から流れに平行に 下流に向かって距離 L離れた地点を B, A から流れに垂直 に距離 W 離れた地点をC, C から流れに平行に下流に離れ た地点をDとする。 船の大きさは無視できるものとする。 W (1)地点AとBを直線的に往復する時間 TB を L, us, ” を用いて表せ。 L→ (2) 船首の向きを, AC を結ぶ直線に対してある一定の角度をなすように上流向きに向 け、流れに垂直に船が進むようにして,地点AとCを直線的に往復する時間を W, us, v を用いて表せ。 (3)L=Wのとき,Tc を TB, us, o を用いて表せ。また,時間 Tc と TB のうち長いほ うを答えよ。 (4) 船首の向きを,ACを結ぶ直線に対し角度 0 (0>0) だけ上流向きに向けて地点 A から船を進めると,地点D に直線的に到着する。 その後,地点DからCに、流れに 平行に進み,地点Cに到着する。地点 A から D を経由し Cまで移動するのに要する 時間を W, US, 0, 0 を用いて表せ。 [東京都立

回答募集中 回答数: 0
数学 高校生

235の(2)(3)について質問です。AGを求めるときに展開図をつかって考えると、直線になっているので求められないじゃんと思ったんですけど、(2)(3)はどのような図形になるのですか? 教えてほしいです。

19 空間図形の計量 215121 * 234 1辺の長さが1である正四面体 ABCD に外接する球および内接す 23 半径をそれぞれ求めよ。 237F 実戦編 * 235 右の図は,AB=2, AD=3, AE=1の直方 体である。 辺BC上に点Pをとり,点Aから点Pを通って, 点Gまで直線で結ぶ。 E このとき、次の問いに答えよ。 0 (1) AP + PG の最小値を求めよ。 〇(2)(1)のとき,∠APG の大きさを求めよ。 (3) (1) のとき, APG の面積Sを求めよ。 2 F 236 右の図のような, 1辺の長さが1の立方体ABCD- EFGHの対角線 EC に頂点Aから垂線 AK を引く。 ∠EAK, KAB をそれぞれα, β とするとき, cosa, COS β を求めよ。 B 3 解答別冊 p.6 A E H P D B F 2371辺の長さがαの正方形を底面とする四角錐 O-ABCD がある。 OA=OB=OC=OD = αのとき (1) この四角錐の高さをαで表せ。 (2) PAD上に点Qを辺AB上にAP=BQ=xとなるようにと 三角錐 P-AQD の体積を最大にするx を α で表せ。 (3) 0=∠QPD とおく。 x が (2)で求めた値のとき, COSOの値とQPD を求めよ。 - Hint 234 内接する球の半径をrとして正四面体の体積をで表す。 235 展開図で考える。 236 <CAE =∠AKE = 90° であることに注意。 337 (?)から底面に下ろした垂線をOH, Pから底面に下ろした垂線をPHとする

回答募集中 回答数: 0
1/9