学年

教科

質問の種類

物理 高校生

(3)について Tc/Tbの意味を教えて欲しいです。(なぜこれが出てきたのか?という過程など…) (4)について なぜA→Dに要する時間がVsの速さでA→Eに要する時間と等しいのか教えて欲しいです。 また、これよりわかりやすい解説があるならば教えていただきたいです。🙇‍♀️

図のように,一定の速さ”で一様に流れる川に浮かぶ船 の運動を考える。 船は、静止している水においては一定の 速さ us (vs>u) で進み, また、瞬時に向きを自由に変えら れる。最初, 船は船着場 A にいる。 A から流れに平行に 下流に向かって距離 L離れた地点を B, A から流れに垂直 に距離 W 離れた地点をC, C から流れに平行に下流に離れ た地点をDとする。 船の大きさは無視できるものとする。 W (1)地点AとBを直線的に往復する時間 TB を L, us, ” を用いて表せ。 L→ (2) 船首の向きを, AC を結ぶ直線に対してある一定の角度をなすように上流向きに向 け、流れに垂直に船が進むようにして,地点AとCを直線的に往復する時間を W, us, v を用いて表せ。 (3)L=Wのとき,Tc を TB, us, o を用いて表せ。また,時間 Tc と TB のうち長いほ うを答えよ。 (4) 船首の向きを,ACを結ぶ直線に対し角度 0 (0>0) だけ上流向きに向けて地点 A から船を進めると,地点D に直線的に到着する。 その後,地点DからCに、流れに 平行に進み,地点Cに到着する。地点 A から D を経由し Cまで移動するのに要する 時間を W, US, 0, 0 を用いて表せ。 [東京都立

回答募集中 回答数: 0
数学 高校生

(1)の1番下から2番目の行まで分かるんですがそこからなぜBD:DC=AB:ACになるのかが分かりません😖解説よろしくお願いします🙇

divide pile lack 不足 adiustだわる an 206 基本例題 128 三角形の内角の二等分線の長さ (1) (1) △ABCにおいて,∠Aの二等分線が辺BCと交わる点をDとするとき, BD: DC = AB : AC が成り立つことを証明せよ。 (2) △ABCにおいて, BC=6,CA=5, AB=7 とし, ∠Aの二等分線と辺 BCの交点をDとする。 (1) を利用して線分 AD の長さを求めよ。.m ŠVAŠKHÉMOE 120,121 CHART & SOLUTION 三角形の内角の二等分線の長さ ① 余弦定理の利用 2 面積の利用 三角形の内角の二等分線については, (1) のような性質がある。 この性質を利用して, (2) で は余弦定理を使って AD の長さを求める。 438160 ② 面積の利用は,後で学習する (p.214 基本例題 133 参照)。 解答 (1) ∠A=20,∠ADB=a とすると, △ABD BA Ply ( と△ACD において, 正弦定理により (75° 20180°-α 100 700m 455 BD sine AB sina' DC ACO sine sin (180°-a) in よって B sine sing AB, DC = BD:DC=AB:AC D sin (180℃~g) = sing であるから,これらを変形すると sine AC BD= sina C d DAA Const M asing B D CRE 図において, AD // EC と すると, ∠AEC=∠BAD =∠CAD=∠ACE から AEAC CHARTI FRISES 1 ABCに albco 三角形の 等式の証人 (2) に代 余 BE

未解決 回答数: 1
1/14