学年

教科

質問の種類

生物 高校生

解説お願いします!! 答えは⑤です!

曲がって結合 直線状に結合 皮では 吸収 った。 チューブリン βチューブリン 体1」 ,「ナト 品物質( チューブリン 2量体 中間体 微小管 図4 微小管の形成と中間体の曲がり具合 (曲率)との関係を調べるために,次の溶液 1~3 を準備し、後の実 験と観察を行った。 なお, 変異型 β チューブリンとは, 野生型βチューブリンとくらべて、自身以外のチュー ブリンと結合しやすくしたものである。 溶液1 αチューブリン, 野生型βチューブリン, GTP を混合した溶液 溶液 2 αチューブリン, 野生型β チューブリン, GDP を混合した溶液 溶液 3 αチューブリン, 変異型 β チューブリン, GTP を混合した溶液 実験 溶液 1~3を37℃に保ち、 多数のチューブリン 2量体が結合する反応を行わせた。 図5は、それぞ微1.0- れの溶液中における微小管の形成量(相対値)を60 分間にわたって測定した結果を示したものである。 なお, 図5 中のグラフ XZは, それぞれ溶液 1~3 量 のいずれかである。 微小管の形成量(相対値) 0.5円 観察 溶液1~3のそれぞれにおいて形成された 中間体を観察した。 図6は, それぞれの溶液で みられた中間体の形成量 (相対値)を曲率 (相対 値)ごとに示したものである。 なお, 曲率の値が 大きいほど曲がり具合が大きく, 値が10以下 のものは直線状とみなしてよいものとする。 20.4 Z 30 60 図5 時間(分) 直線状 溶液3 溶液1 体 0.3 0.2- 0.1 中間体の形成量(相対値) 溶液2 0 10 20 30 40 50 60 70 80 図6 中間体の曲率 (相対値)

回答募集中 回答数: 0
化学 高校生

解説問3の平衡は元々はほとんど左によっているのがどこからわかったのか教えて頂きたいです。それと、HClを入れると平衡が左によるというのはH3O+のHが増加するからという認識で良いのでしょうか? 教えて頂きたいです。よろしくお願いいたします。

13-5 【復習問題】 弱塩基の電離平衡, 加水分解 0.10mol/Lのアンモニア水10mLを0.10mol/Lの塩酸で滴定したときの滴定曲線は 図のようになる。 pH 11 9 クト 3 滴定曲線から, 滴定の終点前後ではpHが大きく変化していることがわかる。 塩酸を 10.10mL滴下したときの溶液のpHを小数第2位まで求めよ。 ただし、このときの溶液 の体積は近似的に20mLと考えてよい。 3 5 1 0 2 4 6 8 10 12 滴下した 0.10mol/Lの塩酸の体積 [mL] 以下の設問において、必要があれば、次の数値を用いよ。 アンモニアの電離定数: Kb = [NH〟] [OH] [NH3] =2.0×10mol/L 水のイオン積:Kw= [H+] [OH−] =1.0×10-14 (mol/L)2 log 10 2=0.30 ○ 問1 滴定開始点の溶液(0.10mol/Lのアンモニア水)のpHを小数第2位まで求めよ。 *問2 滴定曲線から滴定の終点(中和点)の溶液のpHは約5で,弱酸性であることがわかる。 これは,次式に示す塩化アンモニウムの加水分解が起こるからである。 NHC1→NH + + CI NH4+H₂ONH3 + H3O+ 後者の可逆反応の電離定数は次式で表される。 ただし, H3O+ は H+ と表記した。 Kh= [NH3] [H+] [NH&+] 次の(1)~(3)に答えよ。 ただし, 滴定の終点における溶液の体積は20mLと考えてよい。 (1) 滴定の終点における溶液の塩化アンモニウムの濃度を Csmol/L とする。 滴定の終点 における溶液の水素イオン濃度を Cs と Kh を用いて表せ。 (2) Kh をKb と Kw を用いて表せ。 (3)滴定の終点における溶液のpHを(1),(2)の式を用いて計算し、小数第2位まで求めよ。 -142-

回答募集中 回答数: 0
数学 高校生

質問です。 この例題17の(2)の最大値を求める問題についてなのですが,解説の最初に「定義域の中央の値は1」と書かれています。 なぜ定義域の中央の値を用いるのでしょうか。 回答お願いします。

2) に答えよ。 (1) 最小値を求めよ。 関数として 「指針」 けるyの値 問題17 αは定数とする。 関数 y=2x4ax (0≦x≦2) について,次の問い (2) 最大値を求めよ。 αの値によって、定義域内で最小値、最大値をとるxの値が変わる。 グラフが下に凸のとき 最小値は,軸から最も近いxの値でとる 最大値は,軸から最も遠いxの値でとる 着させる。 注意。 これより、軸x=αの位置について以下のように場合分けをする。 [2] 定義域内 (1) [1] 定義域の左外 [3] 定義域の右外 (2)[1] 定義域の中央より左 [2] 定義域の中央 [3] 定義域の中央より右 答 関数の式を変形すると Ex≦5) cの値 y=2(x-a)-2a³ (0≤x≤2) x=0 のとき y = 0, x=2のとき y=8-8a, (1) [1] α < 0 のとき x=0で最小値0 [2]0≦a≦2 のとき x=αで最小値-2a2 [3] 2<α のとき x=2で最小値8-8α (2) 定義域の中央の値は1 (1)[1] [1] α <1 のとき x=2で最大値 8-8α [2] α=1 のとき x=0, 2 で最大値 0 [3] 1 <α のとき x=0 で最大値 0 [2] [3] x=α のとき y=-2a VVV (2) [1] 0 2 a 02 [2] 02 a [3] www 012 012 2012 012 201

回答募集中 回答数: 0
1/1000