学年

教科

質問の種類

化学 高校生

問3途中式教えてください 2枚目です

rの正 ると 入試攻略 への必須問題】 金属セシウム Cs の結晶の単位格子は体心立方格子である。 セシウム原 子は剛体球とし、 最近接のセシウム原子どうしは接触しているとする。 √2≒1.41,√3 ≒ 1.73, 円周率 3.14 として,次の問いに答えよ。 問1 単位格子に含まれる原子の数を書け。 問2 セシウムの結晶の充填率 [%] を有効数字2桁で求めよ。 問3 単位格子の1辺を6.14×10cmとし,セシウムの結晶の密度 g/cm² を有効数字2桁で求めよ。 アボガドロ定数は 6.0×1023 〔/mol], Csの 原子量は 133 とする。 (東北大) 解説 問1 体心立方格子 配位数 8 です 1辺αの立方体の中に半径の球体 の原子が2個含まれているので,充填率 p 〔〕 は, 半径1の球2個分の体積 立方体の体積 x100 πr3x2 3 a³ X100 に \3 r = π ② 3 1 [個分〕 ×8+1 [個]=2 [個] 8 頂点 立方体の中心 問2 半径をr, 立方体の1辺の長さ をα とすると, αとの関係は, ← √2a √a² + (√2a)² = 4r 47 637) よって、 34 となります。 23 …① ・ななめ x2x100 ①式を②式に代入すると, b=117 (√3) ³×2×100 p= 8 ≒67.9... [%] 問3 Csの密度 [g/cm²〕 Cs 2個分の質量 〔g〕 = elge と 単位格子の体積 〔cm〕 Cs 原子1個の質量 133 6.0×1023 ×2 (g) (6.14×10-6)3[cm] ≒1.91(g/cm あちに ななめの 答え 問1 2個 問2 68% 問3 1.9g/cm²

回答募集中 回答数: 0
数学 高校生

図形と方程式の問題です (3)の色の着けたところがよく分かりません。点Pの1つが点Aであるのは何故ですか?解説読んでも分かりませんでした。

頂き を の 部 Y4 図形と方程式 (50点) 0を原点とする座標平面上に, 中心が点 (3, 1) でx軸に接する円Cがある。また、原 点からに引いた接線のうち,傾きが正であるものをとし,Cとlの接点をAとする。 (1) Cの方程式を求めよ。 (2) lの方程式を求めよ。 (3)は,中心がy軸上にあり,点AでCとlに接している。 Dの方程式を求めよ。ま 点PはD上の点であり, OP =3を満たしている。点Pの座標を求めよ。 配点 (1) 10点 (2) 18点 (3) 22点 解答 (1) Cの中心が点 (31) であり, Cはx軸に接するから,Cの半径は, C の中心のy座標に等しく, 1である。 x軸に接する円の半径は、円の 心のy座標の絶対値に等しい。 したがって, Cの方程式は (x-3)2+(v-1)2=1 圏 (x-3)2 +(x-1)²=1 (2) 解法の糸口 Cとl が接することを, 2次方程式が重解をもつ条件に読み替えて考える。 lは原点を通る傾きが正の直線であるから,その方程式は y=mx(m>0) と表される。 C と l が接するとき,これらの方程式からyを消去して得られるxの2次 方程式 (x-3)2+(mx-1)=1 は重解をもつ。 ①を整理すると (x2-6x+9)+(m2x2-2mx+1)=1 (m²+1)x2-2(m+3)x+9=0 ①'の判別式をDとすると2=0であり D 121=(m+3)2-9(m2+1)= 0 -8m²+6m=0 -2m (4m-3)=0 3 m = 0. 4 3 m>0より m = 4 したがって、lの方程式は y= [(2)の別解〕 (3行目まで本解と同じ) 3-4 3 y=x NA A ROS C EL 10 3 x ◆円と直線の方程式からyを消去し て得られるxの2次方程式を ax2+bx+c=0 とし、その判別式をDとすると, D=62-4ac であり 円と直線が接する ← 2次方程式が重解をもつ ⇔D=0 D また,b=26' のとき 1241=b2-ac

回答募集中 回答数: 0
化学 高校生

合ってるか教えてください! 例題15 2.(2)わかんないです!

416 全力投球! (2)I中の(*)から(b)への状態変化を何というか。 (3) 作図図Ⅰ中のX点にある水を, 一定の速 さでゆっくり加熱してV点にした。このときの と を示 す概略図を示せ。 ただし、水の場合は液体状態 の比熱が他の状態よりも大きいこと, および次 のデータも利用せよ。 以下の各問いに答えよ。 図Iは、純粋な水について 圧力および温度に よる三態変化を表したもので、状態図とよばれて いる。 (1) I中の()の各領域は、水のどのような 状態を示しているか。 1013 hPa 11 圧力 X (お) (3) (B) (b) 温度 I 圧力 (hPa) 1000円 800 600 (4) 水を60℃で沸騰させるには、外圧を何 hPa にすればよいか。 蒸発熱 41kJ/mol, 融解熱 6.0kJ/mol 図IIは、図中の曲線 OB を 10~100℃の範 で、 さらに詳しく描いたものである。 400) 200 20 40 60 80 100 図Ⅱ (5) 図のように, なめらかに動くピストン付き のシリンダー内に水を入れ、 空気を除いて60℃に保った。 その後, 次のような操作を行うと, 器内の圧力は何hPa になるか。 ただし, いずれの場合も、 器内に液体が残っていた。 ① 60℃に保ったままピストンを引き上げて, 器内の気体部分の 体験を初めの2倍にした。 ②その後、ピストンは固定したままで, 温度を80℃にした。 水 図Ⅱ 蒸気圧と体積例題15) 右表は、水の飽和蒸気圧を示したものである。 この表を参 考にして下の各問いに答えよ。 ただし, 気体定数Rは8.3× 10 [Pa・1/(K・mol)) とする。 1 と 温度 飽和蒸気圧 [t] [hPa] 27 36 反応させ、発生する水素を水上置換で 捕集したところ, 27℃ 1016hPa の下で体積が300ml で あった。 捕集した水素は何molか。 47 103 87 610 100 1013 2 図のように47℃に保ったピストン付きの容器内に 水素と 0.15molの水が入っている。 この内の圧力は 1013hPa, 体積は10であった。 水素の水への溶解、およ 液体の水の体積は無視できるものとする。 (1) 47℃に保ったままピストンを押して、 気体 半分にすると、 内の圧力は hPaになるか。 (2) 47℃に保ったままピストンを引き上げて, 気体の体 307にすると, 器内の水は何%蒸発しているか。 水 (3) 47℃に保ったままピストンを動かして体積を変える とき、 器内の水素および水蒸気の各分圧は,それぞれどのように変化するか 次のグラフから1つずつ選び記号で示せ。 ただし、 グラフのスケールは任意 である。 (イ) 圧力 男 圧力 圧力 圧力 体験 圧力 体積V 圧力 体積 (2) 圧力 体積 体積 体 体積 体積 (4)温度を87℃に変化させた後, ピストンを動かして体積を変えていくとあ るところでちょうど水がすべて水蒸気になった。 このときの水素の分圧は何 hPa か

回答募集中 回答数: 0
1/852