学年

教科

質問の種類

数学 高校生

写真が横向きですみません。 黄色でマークしたところがわかりません。 なぜ3や5が出てくるのかが解説を見てもピンとこず,出てくる理由が知りたいです。あとなぜ3や5なのかもできれば教えていただきたいです。

正の約数の個数が28個である最小の正の整数を求めよ. (早稲田大) へ、 解答 28=2×2×7 であるから, 正の約数の個数が28個である整数 N を素因数分解すると、 (ア) N = d (1) N=ab () N=a'b'c' (ただし,p, g, rは自然数である.また, a, b, c は相異なる素数である) のいずれかの形で表される. (ア) N=d” のとき,約数の個数は+1であるから,p+1=28より,p=27である. このとき最小のNはa=2とした 227 である. (イ)N= dba (p≦q) のとき, 約数の個数は, (n+1) (g+1) であり、 (n+1)(g+1)=28 これより, 2≦p+1≦g+1に注意すると, (p, q)=(1, 13), (3, 6) abをできるだけ小さくするためには, a≧b とすべきであり, a,bは相異なる 素数なので、 α=3, b=2としたものが 最小である ・(p,g)=(1,13) のとき, 最小のNは,N=31.213 である. 2 ・(p,g)=(36)のとき,最小のNは, N=33.2°(=1728) である. (ウ) N=abic (p≦a≦r) のとき,約数の個数は(n+1) (g+1)(+1) であり, (n+1)(g+1)(r+1)=28 .. (p, q, r)=(1, 1, 6) このとき,最小のNは,N=5'31.2=(960) である. (ア)(イ),(ウ)より、約数の個数が28個である最小の正の整数は,960

未解決 回答数: 0
数学 高校生

このノートの(4)(ii)で、 xとyの最大公約数をgとすると、なぜ g=2^a×3^b×5^c×11^dになるんですか?

ET D Lake A P B BO [D 13 60 A A 15 C 8 B 接弦定理より∠ABD=∠ACBであり、 <Aは共通であるから、 の最大公約数をgとすると、 (i) x x Y or (i)よりa,b,c,dを Osas3, 08652.0 C≤2.0d₤17 満たす整数として d g=2x30x5x119と表せる。 acyの正の公約数の総和2604 よって、 △ABDCACBである。 AB:BD=AC:CB はgの正の公約数の総和に 楽しいので、 であるから、8:BD=15:13 15BD=104 2604=(1+2+…+2)(1+3+-+36) (I+ 5 +---+59) (I+ (1 +- +11) BD=104 である。Osa3.0/2.02. osd/1より、 (4)を正の整数とし、y=19800とする。 となの正の公約数の総和は 2604である。 (ⅰ) yを素因数分解 2119800 2 19900 214950 312475 31 15 +13 X12 45 15 62 31 31825 51275 5155 ( y=28.38.5:1 (ii)xとyの最大公約数 195372 yの公約数の総和 (2+2+2+2))(3+3+3)(5°+5+5) × (11°+11) 372 =(1+2+4+8)(1+3+9)(1+5+25)(1+) '9'0 13651=15×13×31×12 585 72'5'40 212604 211302 31651 71217 31 (+2+…+2=1.1+2,1+2+2+1+2+2+2 =1.3.7.15 (+3+430=1.13.1+3+3=1.4.13 1+5+…+5=1.1+5,1+5+5=1.6.31 1+1+パントけ11=1.12であり 2604=223.7.31 であるから、 ②の右が7の倍数であるにはa=2が 必要で、③のなが3の倍数であるにはC=2 が必要である。このとき③は 22×3×7×37×(1+3+39)x3x(HH-11 すなわち12=(1+3+…+3%)(1+11+..+ となる。「ほたは4または13」と「ほまたは12」の積 が12となるのは1×12のときのみなので、 b=0,d=1である。以上より、 g=23×3×5×11=1100

回答募集中 回答数: 0
数学 高校生

(1)の答えが14個なんですけどなぜ14個なんでしょうか

解答 648を素因数分解すると する。 648=23.34 648 の正の約数は, 23 の正の約数と3の正の約数 の積で表される。 648の素因数 2)648 2)324 23 の正の約数は,1,2,22,23の4個 2)162 34 の正の約数は,1,3,32,3334 の よって, 648 の正の約数の個数は 5個 3) 81 4×5=20 (個) 答 3) 27 648 の正の約数は (1+2+2+23)(1+3+3+33 +3) を 3) 9 展開した頃にすべて現れる。 3 参考 よって, 求める和は (1+2+4+8)(1+3+9+27+81)=15×121=1815 答 自然数NがN=pqr と素因数分解されるとき,Nの正の約数 個数は (a+1)(6+1)(c+1) 総和は (1+p+…+p) (1+g++g°)(1+r+....+r) 練習 28 次の数について,正の約数は何個あるか。 (1) 192 (2)800 練習 29 360 の正の約数の個数と, 正の約数すべての和を求めよ。 テーマ 11 場合の数の応用 TTT 応 1000円札3枚,500円硬貨1枚,100円硬貨2枚の全部または一部を て, ちょうど支払うことのできる金額は何通りあるか。 考え方 1000円札 500円硬貨,100円硬貨の使い方を考えて,積の法則を使 ただし、金額が0円になる場合は除かれる。 解答 1000円札の使い方は0枚~3枚の 4通り 500円硬貨の使い方は0枚と1枚の2通り 100円硬貨の使い方は0枚~2枚の3通り このうち、全部0枚の場合は0円になるから除く。 忘れないよう よって、支払うことのできる金額は 4×2×3-1=23 (通り)

回答募集中 回答数: 0
1/63