学年

教科

質問の種類

数学 高校生

質問です!大問103のように置換(x−1=tと置くと…みたいな)しないといけない問題と普通に置換しなくてもできる問題の2種類があるんですけど、置換する場合の見分け方ってありますか?

第2章 極限 第2章 極限 三角関数と極限 1 関数の極限と大小関係 limf(x) = α, limg(x) =β とする。 1 x-a xがαに近いとき、常に f(x)≦g(x) ならば α≦β 2 xがαに近いとき,常に f(x)≦h(x)≦g(x) かつα=B ならば limh(x)=α 注意 上の事柄は,x→∞, x→∞の場合にも成り立つ。 注意2を「はさみうちの原理」 ということがある。 3 limf(x) =∞ のとき,十分大きいxで常に f(x)≦g(x) ならば limg(x) =∞ |2 三角関数と極限 lim x0 sinx =1, x lim -1 (角の単位はラジアン) x-0 sinx STEPA ■次の極限を求めよ。 [ 104, 105] □ 104(1) lim 1-cos 3x x→0 x2 1 *105 (1) limxcos x 0+x 第2節 関数の極限 31 0 x01−cosx sinx2 (2) lim- 1+sinx (2) lim x 例題 7 中心が0, 直径ABが4の半円の弧の中点をMとし,Aから出た光線 が弧 MB上の点Pで反射して, AB上の点Qにくるとする。 (1) 0=∠PAB とするとき, OQの長さを0で表せ。 (2)PがBに限りなく近づくとき, Qはどんな点に近づいていくか。 |指針 Aから出た光線が弧 MB上の点Pで反射して, AB上の点Qにくるとき ∠OPA = ∠OPQ 求めるものを式で表し, 解答 (1) 右の図において sin 0 0 などの極限に帰着させる。 ∠OPQ= ∠OPA=∠OAP=0 ∠PQB= ∠PAQ+ ∠APQ=30 2 *(2) lim (3) lim x tanx x–0 sinx よって ∠OQP=30 △OPQに正弦定理を用いると, OP=2 であるから ✓ 99 次の極限を調べよ。 (1) lim cos- ■次の極限を求めよ。 [ 100~103] 100 (1) lim- x0 OQ 2 sin sin(л-30) 2sin0 また, sin (π-30)=sin30 であるから 0Q=- sin 30 M 30 Q B (2)PがBに限りなく近づくとき, 0 +0 である。このとき sin2x x0 1−cosx 2sin0 2 sinė 30 2 lim OQ= lim -= lim 0 +0 e+o sin30 -+0 3 0 sin 30 3 よって,Qは線分 OB上のOからの距離にある点に近づいていく。圏 □ 106 半径αの円の周上に動点Pと定点Aがある。 Aにおける接線上に AQ=AP であるような点Qを直線OAに関してPと同じ側にとる。PがA sin4x xC sin2x *(2) lim x-o sin5x (3) lim x-0 tant sin3x tan2x-sinx □ 101 (1) lim- *(2) lim x→0 x 1-cos 2x x-0 xsinx (3) lim x→0 sin3x+sinx sin2x □102"(1) lim COS X sin2x (2) lim- (3) lim x皿 4 に限りなく近づくとき, PQ の極限値を求めよ。 ただし, AP は ∠AOP AP (0∠AOP</V)に対する弧AP の長さを表す。 ax+b 1 1 2x 107 等式 lim が成り立つように, 定数 α, bの値を定めよ。 COS X 2 103*(1) lim tan x° x0 x *(4) lim sin x x1 x-1 1−cosx t- sinx STEPB *(2) lim X-1 sin(x-x) x一π (5) lim x→0 sinx sin(sinx) (3) limx- lim (x-4)tan.x x- xn (6) limxsin X8

解決済み 回答数: 1
数学 高校生

この問題についてなぜ最小値や最大値のaの範囲だけですべての範囲が求められるのかわかりません。 説明お願いします🙇

第2章 2次関数 Check 例題 77 ある区間でつねに成り立つ不等式 **** 次の条件が成り立つような定数αの値の範囲を求めよ。 (1) 2≦x で、つねに x-4ax+4a+8< 0 が成り立つ. (2) 2≦x≦6 で、つねに x4ax+4a+8 0 が成り立つ。 [考え方 グラフで考える。f(x)=x4ax+4a+8 のグラフは下に凸 解答 (1) 区間内での最大値が急であればよい。 (2) 区間内での最小値が正であればよい f(x)=x-4ax+4a+8 とおくと, f(x)=(x-2a)-40°+4a+8 (1) y=f(x) のグラフは下に凸なので 2≦x≦6 での最大値はf(2) またはf (6) である. 2x6 でつねに f(x) <0 となる 条件は、 Jf(2)=-4a+12<0 lf(6)=-20a+44< 0 12 67 AX どちらも負になれ よいから、場合 はしない。 これをともに満たすのは, a>3 (2)y=f(x) のグラフは下に凸で,軸は直線 x=2a (i) 2a2 つまり a<1 のとき 2≦x≦6 での最小値はf(2) よって, 求める条件は, f(2)=-4a+12>0 したがって a<3 これと a <1 より a<1 オ 下に凸なので、最 となるのは軸, 左 x=2, 右端 x=60 いずれか 2a 26x 軸の位置で3通りに 場合分け 必ず, 場合分けした 22a6 つまり 1≦a≦3のとき 2≦x≦6 での最小値はf(2a) よって, 求める条件は, f(2a)=-4a2+4a +8 > 0 したがって, 範囲と合わせる. a²-a-2<0 -1<a<2 21 12a6x 1≦a<2 (a+1)(a-2)<0 -1<a<2 これと1≦a≦3 より (Ⅲ) 62a つまり α>3のとき 2≦x≦6 での最小値はf (6) よって、 求める条件は, f(6)=-20a+44> 0 したがって, a 1/ これとα >3 より,解なし よって, (i)(ii)より a<2 (i) (ii) x 1 2 a 場合分けしたものは 最後はドッキング 練習 f(x)=x-4ax+5α-1 とおく. 0≦x≦2 において,y=f(x) のグラフが *** 77 x軸よりつねに上側にあるような定数αの値の範囲を求めよ. op.1730 例

解決済み 回答数: 1
1/61