学年

教科

質問の種類

数学 高校生

三角形OACの高さについてです。 オレンジ色で波線が書いてあるところがわかりません。 なぜ2sinθ=-sin(120°-θ)ではないのですか。

から また、0<x2a<πであるから 数学Ⅱ 153 << 2 えに、<cosa <1の範囲において、Rはcosa= のとき最大値 2/23 をとる。 ←y< 1 X3 58 2 すなわち a= ←△ABC は正三角形。 <y-x<2 200 72 <y-x < 0 2 練習 162 0を原点とする座標平面上に点A(-3, 0) をとり, 0°0 <120°の範囲にある0に対して,次の 条件(a), (b) を満たす2点 B, Cを考える。 a) Bはy>0の部分にあり, OB=2かつくAOB=180°-0である。 (b)Cy<0の部分にあり,OC=1かつくBOC=120°である。 ただし, △ABCは0を含 むものとする。 (1) AOAB と AOACの面積が等しいとき、0の値を求めよ。 20°<<120°の範囲で動かすとき,△OAB と AOACの面積の和の最大値と,そのとき のsin0 の値を求めよ。 △OAB と △OAC はOA を共 有するから,OAB と AOACの 面積が等しいとき,それぞれの高さ が等しい。 ここで,条件から,動径 OBとx軸の正の向きとのなす角は 180°(180°-0)=0 △OAB の高さは 2 sin 0 2sin=sin(120°-Q)... √3 y B A 180°-6 A x -3 0 120° C △OACの高さは sin(120°-0) ゆえに 1 よって 2sin0= cos 0+ 0+1/2 sin 2 ゆえに 3 sin 0=√3 cos 0 8=90° は ① を満たさないから 0=90° ②の両辺を cose で割って tan0= √3 0°<< 120° であるから 0=30° 〔東京大〕 ←OBsin0 [ ←OCsin (120°-0) X3 (1) E8 ←①の右辺に加法定理 を用いた。 ←6=90° を ① に代入す ると 2sin90°=sin30° これは不合理。 803 4章 練習 章 [三角関数] [同志社大 ] 弐。 給 から, 定。 (2) AOAB と AOACの面積の和をSとすると √√3 S=-3(2 sin0+ cos 0+ =3.2/7 2 -coso+ 1/23sine) = 2424 (5sino+√3 cose) ・2√7 sin(0+α)=3√7 -sin (0+α) 2 ただしsina= √21 5√7 COS α= (0°<a<90°) " 14 14 ① 0°0<120°0°<α <90° より、0°<0+α<210° であるから, この範囲において, Sは0+α=90° のとき最大となり,そのes osa 最大値は 3√7 -sin90°= ..1= 37370 2 2 2 また、+α=90°のとき 5√7 sin=sin(90°-α)=cosa= 140-D >820 -Qua ←三角関数の合成。 の値を具体的に求め られないときは左のよ うな「ただし書きを忘 れないように。 miaa

未解決 回答数: 2
物理 高校生

高校物理電流と磁場の質問です 磁場の向きを考える時で右ねじの法則を使う時、HaベクトルとPAがなす角は90°と決まっているのですか?鉛筆で書いたような、HaベクトルとHbベクトルがなす角が60°にはならないのですか?

267 直線電流がつくる磁場の合成 十分に長い2本の導線 A,Bを2d [m] 離して平行に張る。 図のように,Aには紙面の 裏から表の向きにI [A] の電流を,Bには表から裏の向きに I [A] の電流を流した。図中の点Pでの磁場の強さ H [A/m] を 求めよ。 P 60° 例題 55 \60 60° 2d 267 B8 十分長い直線電流I〔A〕 が距離[m] の点につくる磁場は、 電流の向きに右ねじが進むようにねじ を回す向きで,その強さは H= [Am] となる。 磁場はベクトルであるから、点Pでの磁場は各 ここがポイント 2πr [VIT 直線電流がつくる磁場を合成して求める。 導線Aと導線Bが点Pにつくる磁場とは 右図のようになる。 導線Aと導線Bに流れる電流 はどちらも「[A] で, AP-BP=2d[m] である から、点Pにつくる磁場の強さは直線電流がつく る磁場の式 「H=- H HA HB 30° 30° より 2πr 60 I I HA=Hn= = [A/m] 2×2d And 点での磁場は,Hと77日を合成した磁場で -2d- B に平行な方向の成分は同じ大きさで逆向きなので打ち消しあい, 合成磁場 の向きは線分ABに垂直上向きになる。 H』とπの線分AB に垂直な 方向の成分は Dを Hasin30°=Hasin30°=ax/[A/m]5 であるから, 点Pでの磁場の強さは 1 別解 下図のように、 磁場 と君がな す角は60°である。 Hは豆 とTBを2辺とする平行四辺 形の対角線なので ∠PRQ=60° となり, △PQR は正三角形である。 ゆえに H=H= -[A/m] 4nd R 60H 60° 60° 060° #ダイ I 1 I H=2x = 4rd 2 And [A/m] (1+1)×0.0+0 HA H B P S

未解決 回答数: 0
数学 高校生

グレーのマーカーの部分を教えてほしいです。

重要 例題 55 関数の作成 図のような1辺の長さが2の正三角形ABC がある。 点PA が頂点Aを出発し,毎秒1の速さで左回りに辺上を1周す るとき,線分 AP を 1辺とする正方形の面積yを,出発後 の時間x (秒) の関数として表し、そのグラフをかけ。 B ただし、点Pが点Aにあるときは y=0 とする。 CHARTS OTTT- はは正方形の面積で APを1辺をするからな か→ x=2,4 (S) 平方の定理から求める。 3章 y=AP2 であり, 条件から,xの変域は 0≤x≤6 [1] x=0, x=6 のとき よって [2]0<x≦2 のとき y=x2 点Pが点Aにあるから 点Pは辺AB上にあって y=0 AP=x P x-4 [3] 2<x≦4のとき 点Pは辺BC上にある。 辺BCの中点をMとすると, BCAM であり よって, 2<x<3のとき BM=1 B-PM x-2 ると PM=1-(x-2)=3-x 3<x≦4のとき ここで AM=√3 PM=(x-2)-1=x-3 ミルガウス 7 関数とグラフ ゆえに, AP2=PM2+AM2 から y=(x-3)2+311] [4] 4<x<6 のとき 点Pは辺 CA 上にあり, PC=x-4, AP2=(AC-PC) から y=(x-6)² [1]~[4] から 0≦x≦2 のとき y=x2 2<x≦4 のとき y=(x-3)2 +3 YA 4 3 4<x≦6 のとき y=(x-6)2 グラフは右の図の実線部分である。 234 6 x ◆結局 2<x≦4 のとき PM=|x-3| 頂点(3,3), 軸 x=3 の放物線 {2-(x-4)}2=(6-x) 2 =(x-6)2 頂点 (6,0),軸x=6 の放物線 x=0, y=0 は y=x2 に, x=6, y=0 は y=(x-6)2 に含められる。 ④ 88-237 PRACTICE・・・ 55 1辺の長さが1の正方形ABCD がある。 点Pが頂点Aを出発し, 毎秒1の速さでA→B→C→D→Aの順に辺上を1周するとき, 線分APを1辺とす る正方形の面積yを,出発後の時間x (秒) の関数で表し,そのグラフをかけ。 ただし、点Pが点Aにあるときは y=0 とする。 []

未解決 回答数: 1
1/88