学年

教科

質問の種類

数学 高校生

次の問題で思考プロセスが青いところから下が何がしたいのかよくわからないのですがどなたか解説お願いします🙇‍♂️

思考プロセス an= = (+)" cos —— nx 2 COS nπとする。無限級数Σam の和を求めよ。 <ReAction 無限級数の収束 発散は,まず部分和 Sm を求めよ 例題111) 規則性を見つける YA n=3m-2 αの の部分は, n= 1, 2, 3, のとき 1 1 1 2 2 2' 2' をくり返す。 |場合に分ける ={1-(1)}/{1-(1)}+//{1-(1)} 3m =--{1-(/)} n→∞ のとき, m→∞ となるから 2 lim S3 = 7 2 n=3m 7 ここで. cos 1 より 10 1x 2 n=3m- 0≤ COS lim 12-00 1 (1/2) = 0 より, はさみうちの原理より an → 0 一方, Ssm-1= Ssm-αsm, Ssm-2=Ssm-1-asm-1 であり, In=3m n=3m-1(mは正の整数) の場合に分けて考える。 In=3m-2 (ア) S3m = a1+a2+as+..+α3 =(a1+a+…+α3m-2)+(a2+α+... +α3-1)+(as+a+..+α3m) n→8 → すべて一致すれば (イ) S3m-1= S3m-a3m= n→∞ その値が24円 (ウ) S32S3-1-43m-1=| n→∞ an n=1 解 S= ak とおくと, n=3mm は正の整数)のとき 数列{cos 2 MTが 3 12 4 = COS (2/2) COS2 1 2' 2 1 1,... の (1/2) くり返しになることに着 目して場合分けする。 cos COS4 Sam-cos+() cos+(½) 8 COS +(1/2)*cos 37 + (12)² cos 107 COS COS -π+ 3 +・・・+ 3m- ・1/11/2+(2)+....+(1/1) ***} =- +・・・+ (4)+ 3m COS2m² //{(1)+(2)+....+(1/1)} +・・・+ 3m-1 各{}内は,すべて 公比 t +{(12)+(2)+..+(1/2)}会 (12),数の等 3m 3 12/{1-(1/2)^} (1){1-(1)} 1 1 2 1-(1/2) 3 2 1 3 比数列の和である。 (1/2){1-(1)} + 1 3 no のとき αsm 0, αsm-10 であるから lim S3m-1=lim S3m-2 = lim Ssm したがって 2 19L-00 lim S. = (+) cos nx = COS Point 無限級数の計算の順序 2 7 例題116のPoint で学習したように, 無限級数では, 勝手に項の順 けない。 そのため, 結果は同じであったとしても、 次のように解答を 4 COS- acosx+(1) cosx+(2) cos = COS n=1 2 3 3 COS 14 +(1/2) cos/1/12+(1/2) 1 十 ={12+(1/2)+(2)+...}cos/3+{(1/2)+(1/2)+(- 1 2 (/)+ 1 8 3 +(+) cos+(4) 00810+ COS COS 3 COS 1 316 36 123 12 + ( 12 +{(1/2)+(1/2)+1 (-1/2)+ (2) 1 117 無限級数 1 nπ sin² 2 の和を求めよ。

未解決 回答数: 1
数学 高校生

次の95の問題でどうやったら青線の様なものを作ろうと考えれるのでしょうか?どなたか解説お願いします🙇‍♂️

94 数列{√3m² + 2n+1 + an} が収束するように定数αの値を定めよ。 また, そのときの数列の極限 値を求めよ。 a≧0 のとき, lim(√/3n² +2n+1+an) ∞ であるから >0のとき 00+00 α = 0 のとき 00+0 {√3m² +2n+1 + an}収束しない。 (発散する) = (0+0) = 0 limb=lim +80 70-+00 (an+bn)-(an-bn) 2 = 2 {lim(an +bn) — lim(an − bn)} 1 = (0-0)=0 2 α < 0 のとき √3m² + 2n+1+an= (√31 -2n+1+an)(√3m² +2n+ an) 分子を有理化する。 したがって,この命題は真である。 3n2+2n+1-an 3n2+2n+1²n² √3m² +2n+1 96 lim (pn²+n+g)a=p+1のとき, 数列{a} (3-4)n²+2n+1 = N /3n² +2n+1- (ア) 0 のとき よって ne lim(√3n²+2n+1+an) = lim (3n+2n+1 28-00 2+2n+1-an = 00 mn²an = lim (pn²+n+q)an·· lim(pn²+n+g)an pn²+n+ 1 1 p+ 4 (3-a)n+2+ n =m 88810 分母分子をnで割る。 1 2 1 3 + (p+1)·· p+1 + -a 根号の中は と p Þ n n² して割る。 (イ) p=0 のとき a² = 0 nの係数3 が lim(n+g)an=1でるから - 0 であれば,○○ 収束するためには α <0 より 3 このとき, ①は 1 2 + n 2 3 lim 2 1 3 + + + √3 2√3 3 n n したがって a=― √3. 極限値 √3 3 95 数列{a}, {6}において,次の命題の真偽をいえ。 たは∞ に発散する。 = limn (1) liman=8, limb =∞ ならば lim (a-b)=0 00 8-1 (2) lim (a+b) = 0, lim (a-bm) = 0 ならば lima = limb=0 81-0 100 (1) an=ne,b=n とすると, lima=∞, limb = であるが 10 lim(an-bn)= lim (n2-n) 28-00 したがって,この命題は偽である。 0 480×18 1 (1-1)= = 10 (an+bn)+(an−bn) (an+bn)-(an-bn) 2 (2) an= ら, lim(an+6m)=0,lim (an-bn) = 0 のとき bn = であるかan, by を an+b, 2 a-b で表す。 (an+bn)+(an-bn) limax= lim 18-00 →0 2 {lim(an+bn) +lim(an-bn)} 2 n2 limnan lim(q) n+g n = lim (n+ = ∞0 1+P n (ア)(イ)より、 求める極は Jp≠0のとp+1 lp=o = 0 の 8 P 97 極限値 1 2n-1 (n+sinn) を求めよ。 1 (nsinn0) n sinn0 + 2n-1 2n-1 2n-1 n 1 1 ここで lim = lim = - 2n-1 1 2 2 n また、すべてのnについて -1 sinne 1 2n0 より 辺々を2-1で割ると 1 sinn0 1 2n-1 2n-1 2n 1 1 ここで, lim- = 0, lim 2n-1 1 -2n-1 =0 であ sinn0 けさるうたの lim

未解決 回答数: 1
数学 高校生

〜を引いたところの変形の仕方がわかりません。

基本 例題 20 極限の条件から数列の係数決定など ①①①① (1) 数列 {a} (n=1, 2, 3, ...) が lim (3n-1)α=-6 を満たすとき, ■である。 lim nan 8 7118 [類 千葉工大] (2) lim(√2+an+2-√n²-n) =5であるとき、 定数 αの値を求めよ。 /p.34 基本事項 2 基本 18 41 指針 (1)条件 lim (3n-1)a=-6を活かすために,na"=3n-1)lan× n と変形。 →∞ 13n- 数列{37-1 は収束するから,次の極限値の性質が利用できる。 liman=a, limbn=β⇒limanbn=aβ (a,βは定数) 818 818 n18 (2) まず, 左辺の極限をαで表す。 その際の方針は p.38 基本例題18(3) と同様。 (1) nan=(3n-1)anx n であり 3n-1 lim(3n-1)an=-6, →∞ lim n→∞ 3n-1 n = =lim n1α 1 3- n n limnan=lim(3n-1)an×lim よって n→∞ n→∞ n→∞ 3n-1 13 nan を収束することが わかっている数列の積で 表す。 (税込) 極限値の性質を利用。 =(-6)=-2 3 であるから (2) lim(√2+an+2-√n-n) n→∞ =lim n→∞ (n²+an+2)−(n²−n)) =m=mil √√n²+an+2+√√n²-n ((a+1)n+2 mi =lim →∞ =lim- n18 √netan+2+√n²-n (a+1)+- 2 n 12 n ==a+1 2 (税込) 分母分子に √n²+an+2+√n-n を掛け,分子を有理化。 1分母分子をnで割る。 子をnで割る。 'n> 0 であるから n=√ a 2 n 1+ + + 1 n² よって, 条件から a+1 =5 2 Ma=9 したがって {a.l. αの方程式を解く。

未解決 回答数: 1
1/187