学年

教科

質問の種類

数学 高校生

(3)が文字が多すぎてわからないです💦 3つの文字がある時になぜ解答のようになるのか教えて欲しいです!!

第1章 い J 10 第1章 式と証明 基礎問 是 • 42項定理 多項定理 (1)次の式の展開式における[]内の項の係数を求めよ. (ii) (2x+3y) (x³y²] (i) (x-2) (x³) (2) 等式 nCo+mCi+nCz+..+nCn=2" を証明せよ。 (3)(x+y+2z)を展開したときのry'zの係数を求めよ。 精講 2項定理は様々な場面で登場してきます. ここでは I.2項定理の使い方の代表例である係数決定 Ⅱ.2項定理から導かれる重要な関係式 以上2つについて学びます。 2項定理とは, 等式 (a+b)=n Coa"+na" 16+... +nCkan-kbk+... +nCnbn のことで, Cha"-kb (k=0, 1, , n). を (a+b)” を展開したときの一般項といいます。 参考 次に (x+y) を展開したときの一般項は Cirkyk-i したがって(x+y+2z) を展開したときの一般項は 6Ck kCixiy-(22)6-k =26-• Ch* Ci x¹y-iz-k よって, ray'zの係数は k=5, i=3 のときで 216C55C3=26C1・5C2 ポイント =2・6・10=120 11 定数の部分と文字式 の部分に分ける (a+b)" =nCoa+nCian1+..+nCkan-kbk+…+nCnbn 20% (3)は次の定理を使ってもできます. 多項定理 (a+b+c)” を展開したときの abc" の係数は >>n! (x) p!q!r! (p,g,rは0以上の整数で, p+g+r=n) (x+y+2z) を展開したときの一般項は 6! p!q!r!xy(22)=- 276! p!q!r! xyz" p=3, g=2,r=1のときだから求める係数は (p+g+r=6) 答 (別解) (1)(i)(x-2)を展開したときの一般項は Cr(x)^(-2)=Cr(-2)7-'.' r=3のときが求める係数だから < Crx7" (-2)" でも その数 文字 7X6X5 7C3(-2)=- .24=560 3×2 よい 2・6! -=120 3!2!1! (i) (2+3y) を展開したときの一般項は 5C(2.x)(3y)=5Cr・2'35-xTy5-r r=3のときが求める係数だから 5×4×3 5C3・23・32= ・・2・32=720 3×2 sCr(2x)-(3y)" T 文字 もよい (2)(a+b)"=Coa+nCia-16++nCn-ab-1„ C„b" の両辺に a=b=1 を代入すると (1+1)=„Co+„C+..+nCn ..nCo+nC+..+nCn=2" (3)(x+y+2z)を展開したときの一般項は。Ch(x+y)^(2z)6-k 注 1. 多項定理を使うと, 問題によっては,不定方程式 p+q+r=n を解く 技術が必要になります. 注2. (1)(ii)のようにx,yに係数がついていると, パスカルの三角形は使いに くくなります。 演習問題 4 (1) (32y) における ry の係数を求めよ. (2) Co-C1+C2-nCs+..+(-1)"C=0 を証明せよ -

解決済み 回答数: 1
数学 高校生

数1Aの三角比の範囲です。 例題の解答を読みましたが全体的に何をしてるのかよくわかりません。特に最初の3行は何を比較しようとしてるのかわからないです。 解説をお願いします。

155 重要 例題155 三角形の最大辺と最大角 0000 x>1とする。 三角形の3辺の長さがそれぞれx2-1, 2x+1, x2+x+1であると この三角形の最大の角の大きさを求めよ。 [類 日本工大] 基本 153.154 指針 三角形の最大の角は、最大の辺に対する角であるから, 3辺の大小を調べる。 このとき,x> 1 を満たす適当な値を代入して, 大小の目安をつけるとよい。 例えば,x=2 とすると x2-1=3, 2x+1=5,x2+x+1=7 x2+x+1が最大であるという予想がつく。 なお,x2-1, 2x+1, x2+x+1が三角形の3辺の長さとなることを, 241 となるから, 4章 三角形の成立条件 |b-cl<a<b+c で確認することを忘れてはならない。 CHART 文字式の大小 数を代入して大小の目安をつける 『解答 章 8 18 正弦定理と余弦定理 x>1のとき x2+x+1-(x2-1)=x+2>0 x2+x+1-(2x+1)=x2-x=x(x-1)>0 よって、3辺の長さを x2-1, 2x+1, x2+x+1とする三角形が 存在するための条件は 整理すると x2+x+1<(x2-1)+(2x+1) x>1 したがって, x>1のとき三角形が存在する。 また,長さが x2+x+1である辺が最大の辺であるから,この 辺に対する角が最大の内角である。 この角を0とすると, 余弦定理により x2+x+1が最大という予 想から,次のことを示す。 x²+x+1>x2-1 x²+x+1>2x+1 三角形の成立条件 |b-cl<a<b+cは, αが最大辺のとき a<b+c だけでよい。 COS = (x-1)+(2x+1)-(x²+x+1) 2(x-1)(2x+1) x4-2x2+1+4x2+4x+1-(x+x2+1+2x'+2x+2x2) 2(x-1)(2x+1) -2x3-x2+2x+1 2(x2-1)(2x+1) 2x3+x2-2x-1 x²-1 x²+x+1 2x+1 2(x2-1)(2x+1) 2x3+x²-2x-1 =x2(2x+1)-(2x+1) =(x-1)(2x+1) (x-1)(2x+1) 1 == 2(x-1)(2x+1) 2 したがって 0=120°

解決済み 回答数: 1
1/54