学年

教科

質問の種類

数学 高校生

マーカーのところで、∫の中がx dyになるのはなぜですか? ∫-cosx dyじゃないんですか?

基本 例題 257 曲線x=g(y) と軸の間の面積 次の曲線と直線で囲まれた部分の面積Sを求めよ。 (1) y=elogx, y = -1,y=2e, y 軸 (2)y=-cosx(0≦x≦z), y=1/28=-1 427 82 000 指針 まず, 曲線の概形をかき, 曲線と直線や座標軸との交点を調べる。 解答 2y軸 p.424 基本事項 3 8 重要263 y x=g(y) d S 常に (1) y=elogx を xについて解きで積分するとよい。 ...... ・・xについての積分で面積を求めるよりも,計算がらくになる。 (2)と同じように考えても,高校数学の範囲ではy=-COSx を x=g(y) の形にはできない。 そこで置換積分法を利用する。 なお,(1),(2) ともに別解のような、長方形の面積から引く方法 y でもよい。 x=ar C (1) y=elogx から y=10gax x=ee S= g(y)≥0 s=gydy (1) の別解 (長方形の面積か y YA よっ -e2. x= ら引く方法) -1≤y≤2e T\ x>0(x) 2e 12e 1 よってS=Setdy=[ez] (2) =eeee1分5 ①とする=e-e-2/ よび直線 y=x に関して対称である。 (2)y=-cosx から dy=sinxdx -1 お 2e+1 y よって は 8.S である。[ S=xdy= fxsinxdx 58 x 3 (051) 5 2 から 3 --xcosx}" + f2" cosxdx X COS X T π 3 123 !e2 → ↑ 1 S=e²(2e+1) -S" (elogx+1)dx =2e3+e² -[e(xlogx-x)+x] =e³-e¹-1 2 (2)の別解 (上と同じ方法) S=(1+1) -cosx+1)dx 2 → π 3 1 inx- 3 y=-cost 3 1部分の 2. S 233 2 π 2 3 -*+*+0- 3 6 π 2 2 +[sin x] π 0 π x 2 π 2 2 2 3" 8/3

未解決 回答数: 1
物理 高校生

⑶の問題でなんでマーカーの部分の式をかけるのか教えてほしいです!!!

し 秒 [15] 【センターより】 音波に関する次の文章を読み、下の問い ((1)~(3)) に答えよ。 音のドップラー効果について考える。 音源、観測者。 反射板はすべて一直線上に位置し ているものとし、空気中の音の速さはVとする。また、風は吹いていないものとする。 (1)次の文章中の空アイに入れる語句と式の組合せとして最も適当なもの を,下の①~④のうちから1つ選べ。 図1のように、静止している振動数の音源へ向かって、観測者が速さで移動 している。このとき、観測者に聞こえる音の振動数はア音源から観測者へ向か う音波の波長はイである。 音源 ア ①よりも小さく ②よりも小さく イ V-v fi V チェ V2 よりも小さく J (V+v)fi V-v ④ と等しく fi V @ と等しく V2 と等しく (V+v)fi V-v 0よりも大きく f₁ V よりも大きく f₁ V2 よりも大きく 観測者 (V+v)fi (2) 図2のように, 静止している観測者へ向かって, 振動数の音源が速さで移動 している。 音源から観測者へ向かう音波の波長を表す式として正しいものを、下の ①~⑤のうちから1つ選べ。 =2 ① √2 観測者 図 2 V-v [③] V+v V² ④ (V-v\/ 音源 f2 V² (V+0)f2 (3) 図3のように, 静止している振動数の音源へ向かって, 反射板を速さで動か した。 音源の背後で静止している観測者は, 反射板で反射した音を聞いた。 その音の 振動数はf であった。 反射板の速さを表す式として正しいものを,下の①~⑧ のうちから1つ選べ。 3 観測者 音源 反射板 ① 113-114 ⑤ fs-fiy fath V 図 3 ② fatfav③ チューナ ⑥ fs ④ h-hy チュ 近

未解決 回答数: 1
数学 高校生

(2)すなわち、より下の部分が分かりません。 なぜすなわちの部分が言えればαバーが解を持つと言えるのですか?

(1) 複素数zが,3z+2z=10-3i を満たすとき, 共役複素数の性質を利用し て, zを求めよ。 (2) a, b, c, dは実数とする。 3次方程式 ax3+bx²+cx+d=0 が虚数α を解にもつとき,共役複素数αも解にもつことを示せ。 CHART & SOLUTION 複素数の等式 両辺の共役複素数を考える p.417 基本事項 nomujo 2 実 (1)共役複素数の性質を利用してぇとえの式を2つ作る。zとぇの連立方程式と考え,z を求める。 (2)x=α が方程式 f(x)=0の解⇔ f(α)=0 →>> f(d)=0 が成り立つことを示せばよい。 解答 (1) 3z+2z=10-3i ・・① とする。 ...... ①の両辺の共役複素数を考えると よって 3z+2z=10+3i 3z+2z=10-3i 共役複素数の性質を利用 snsoα, β を複素数とすると a+b=a+B 更に, k を実数とする ゆえに 3z+2z=10+3i すなわち 2z+3=10+3•••• ② ① ×3-② ×2 から ゆえに z=2-3i 5z=10-15i 実 その点だけである? (2) 3次方程式 ax+bx+cx+d=0 が虚数αを解にもつ から aa+ba2+ca+d = 0 が成り立つ。 ka=ka, a=a ← x=α が解⇔ を代入すると成り立 両辺の共役複素数を考えると aa+ba2+ca+d=0 よって aa+ba2+ca+d=0 -0 ゆえに aa+ba2+ca+d=0 すなわちα(a)+b(d)2+ca+d=0 a, b, c, dは実数で るから a=a,b=b,c= d=d0=0 これは,x=α が3次方程式 ax+bx2+cx+d=0 の解 であることを示している。 また よって、3次方程式 ax+bx2+ cx+d=0 が虚数αを解 にもつとき,共役複素数αも解にもつ TION a=(a)" 実数係数の方程式の性質 複素数 x=αも方程式

未解決 回答数: 1
日本史 高校生

見えにくくてすいません!🙇‍♀️答えは合っているでしょうか?😭

問題.1 (1) 国家と国民に関する次の記述のうち、正しいものはどれか。 国家は、領民を主権によって統治する組織であり、 必ずしも領域を必要としない。 ○ 近代国家においては、一つの政府が対外的にも対内的にも国家を代表する体制でなければならない。 国民の資格を国籍というが、日本ではその要件は直接憲法によって定められている。 憲法上国籍離脱は自由であるが、 外国籍を取得することが条件とされている。 日本では血統主義が採られているので、 日本国内で出生することで日本国籍を取得することはない。 問題.2 (2) 憲法規範の特色と立憲主義に関する次の記述のうち、正しいものはどれか。 ○ 憲法は、個人の自由を確保し人間の尊厳を確立することを目的としている。 立憲主義の具体的内容に統治機構の仕組みに関する観念は含まれない。 民主主義は最善の政治制度として、 一義的に定義されるものである。 O 権力分立は、国内の政治勢力の均衡を目的とし国民の自由の守護は目的とされない。 立憲主義は国家の普遍的な政治理念であり、 古代共和政の時代から存在した。 問題.3 (3) 日本国憲法の基本原理に関する次の記述のうち、 妥当なものはどれか。 ○ 日本国憲法の三大基本原理とされるものは、 国民主権、 基本的人権の尊重、 権力分立である。 国民主権は、J・ロックの社会契約論に典型的に表されているように、 近代憲法の基本原則の一つである。 ○ 日本国憲法の象徴天皇制は、天皇が国の象徴たる役割以外の役割をもたないことを強調するところに意義があ る。 ○ 天皇の政治的行為は憲法上 「国事行為」 に限定され、 その中立性が保たれているので内閣の助言と承認は不要 である。 ○ 現在自衛隊が憲法9条に違反しないという見解が、政府や最高裁判所のみならず学者の間でも定説である。

回答募集中 回答数: 0
数学 高校生

[3]θ=0のときPはAに一致 とありますが、QもAと一致しますか?

極方程式と軌跡 00000 基本 例題 83 点Aの極座標を (10, 0), 極0と点Aを結ぶ線分を直径とする円Cの周上の任 意の点をQとする。点Qにおける円Cの接線に極から垂線OP を下ろし、 Pの極座標を (r, 0) とするとき,その軌跡の極方程式を求めよ。 ただし, 00πとする。 [類 岡山理科大 基本 81 指針点P(r, 0) について,r,の関係式を導くために,円Cの中心Cから直線 OP に垂線 CHを下ろし、 OP と HP, OH の関係に注目する。 まず, 00 0<<> π 2'2 <<πで場合分けをして, 0 の関係式を求め,次に, 0=0, の各場合について吟味する。 CHART 軌跡 軌跡上の動点 (r, 0)の関係式を導く 解答 Cの中心をCとし, Cから直線OP に垂線 CH を下ろすと OP=r, HP=5 [1]08のとき [1] P Q 10=7を境目として,Hが 線分 OP 上にあるときと 線分 OP の延長上にある ときに分かれる。 OP=HP+OH OH=5cos0 であるから r=5+5cos [2]のとき [2] OP=HP-OH ここで OH=5cos (π-0)=-5cos0 よって r=5+5cose [3] 6=0 のとき, PはAに一致し、 OP=5+5cos0 を満たす。(*) [4] 6=1のとき,OP=5で, H+ 0 -5-C -5 A X <直角三角形 COH に注目。 C P 1-5- C A H-O C π OP=5+5cos を満たす。(*) 以上から、求める軌跡の極方程式は r=5+5cos0 練習 <直角三角形 COH に注目 (*) [1], [2]で導かれた r=5+5cose が 8 = 0, のときも成り立つかど をチェックする。 [参考] r=5(1+cos e) で れる曲線をカージオイ いう (p.151 も参照)。 点Cを中心とする半径 αの円 C の定直径をOA とする。 点Pは円C上の動 © 83点Pにおける接線に0から垂線OQを引き, OQの延長上に点 R をとって QR=α とする。 Oを極, 始線をOAとする極座標上において, 点Rの極座 (10)(ただし,0≦) とするとき (1)点Rの軌跡の極方程式を求めよ。 (2)直線 OR の点R における垂線 RQ' は, 点C を中心とする定円に接する を示せ。 Op.152E

未解決 回答数: 1
1/702