学年

教科

質問の種類

数学 高校生

軍数列を解く時のコツってなんですか?何からやればいいのか分からないです

1から順に並べた自然数を 12, 34, 5, 6, 7/8, 9, 10, 11, 12, 13, 14, 1516, のように,第n群 (n=1, 2, ...) が2"-1 個の数を含むように分け る. (1) 第n群の最初の数をnで表せ. (2)第n群に含まれる数の総和を求めよ. (3)3000 は第何群の何番目にあるか. 精講 ある規則のある数列に区切りを入れてカタマリを作ってできる群数 列を考えるときは, 「もとの数列で、はじめから数えて第何項目か?」 と考えます。このとき,第n群に入っている項の数を用意し,各群の最後の数 に着目します. 解答 (1) 第 (n-1) 群の最後の数は、はじめから数えて 各群の最後の数が基 (1+2+..+2"-2) 項目 . 準 第 (n-1) 群 2-1-1- 第n 群 ***, 3000, 2"-1 2-1 ここで,2''=2048, 22=4096 だから 2" <3000<212 ∴.n=12 よって, 第12群に含まれている。 第 (n+1) 群 このとき,第11群の最後の数は, 2"-1=2047 だから, 2n 注1.第12群に含まれているとき, 第12群の最初の数に着目すると 3000-2047=953 より, 3000は第12群の953番目にある. 3000-2048と計算しないといけません. 逆にひき算をすると答 がちがってしまいます。 注2 (3) 2行目の 2"-130002"は2" ' 3000≦2"-1 でも、 2-1-1<3000≦2"-1 でもよいのですが,(1)を利用すれば解答の形に なるでしょう。 注3.(1),(2)はnに具体的な数字を入れることによって検算が可能です。 ポイント すなわち, 2-1-1) 項目だからその数字は 2"-1-1 等比数列の和の公式 を用いて計算する よって,第n群の最初の数は (2-1-1)+1=2"-1 (2)(1)より第n群に含まれる数は 初項 2-1 公差 1, 項数 2"-1の等差数列. よって, 求める総和は 11.2"-1{2.2" '+ (2"-1-1)・1} 2 =2"-2(2・2"-'+2"-1-1)=2"(321) 解) 2行目は初項 27-1 主 演習問題 131 もとの数列に規則のある群数列は, I. 第n群に含まれる頃の数を用意し Ⅱ. 各群の最後の数に着目し Ⅲ. はじめから数えて何項目か と考える 1から順に並べた自然数を 1|2, 34, 5, 6|7, 8, 9, 10|11, 12, 13, 14, 15/16,

回答募集中 回答数: 0
数学 高校生

この解答の(1)(2)がなんでこうなるかわからないので教えて欲しいです!!

207 za 基礎問 206 133 格子点の個数 3つの不等式 x≧0, y≧0, 2x+y≦2n (nは自然数)で表さ れる領域をDとする. (1) Dに含まれ, 直線 x=k (k= 0, 1, ...,n) 上にある格子点 (x座標もy座標も整数の点) の個数をkで表せ。 (2) Dに含まれる格子点の総数をnで表せ . 精講 計算の応用例として, 格子点の個数を求める問題があります. こ れは様々なレベルの大学で入試問題として出題されています。 格子点の含まれている領域が具体的に表されていれば図をかいて数 え上げることもできますが,このように,nが入ってくると数える手段を知ら ないと解答できません.その手段とは,ポイントに書いてある考え方です。 ポイントによれば,直線 y=kでもできそうに書いてありますが、こちらを 使った解答は (別解) で確認してください. (1) 直線 x=k上にある格子点は (別解)直線y=2k (k=0, 1, ...,n) 上の 格子点は(0,2k), (1,2k), ..., n-k2k (n+1) 個. 注 2n y=2k また,直線 y=2k-1 (k=1, 2,...,n) 上の 格子点は n Oi-k 02k-1), (1,2k-1), ..., (n-k, 2k-1) (n+1) 個. よって, 格子点の総数は 2n (n+1)+(n-k+1) k=0 k=1 y-2k-1 2Σ(n-k+1)+(n+1) =n(n+1)+(n+1) =(n+1)(n+1) =(n+1)2 \n On-k+ y=2k と y=2k-1 に分ける理由は直線 y=k と 2x+y=2n の交点を求めると,(n-212 k) となり,n-1/2 がんの偶奇によって 整数になる場合と整数にならない場合があるからです。 解答 Y (k, 0), (k, 1), 2n x=k (k, 2n-2k) ポイントある領域内の格子点の総数を求めるとき の (2n-2k+1) 個. 2n-2k-- 注 y座標だけを見ていくと, 個数がわかります. (2)(1)の結果に,k= 0, 1, ..., n を代入して, すべ て加えたものが,Dに含まれる格子点の総数. 0 I. 直線 x=k (または, y=k) 上の格子点の個数を k で表す Ⅱ.Iの結果について Σ計算をする y=-21th .. (2n-2k+1) =24721 k=0 ◆ 等差数列 2 {(2n+1)+1} 等差数列の和の公式 演習問題 133 =(n+1)2 第7章 注 計算をする式がkの1次式のとき,その式は等差数列の和を表 しているので、12/27 (atan) (112) を使って計算していますが,もち ろん, 2n+1)-2々として計算してもかまいません。 k=0 k=0 放物線y=x2 ・・・ ① と直線 y=n² (nは自然数) ...... ② がある. ①と② で囲まれた部分 (境界も含む)をMとする.このと 次の問いに答えよ. (1) 直線=k (k=1, 2,...,n) 上のM内の格子点の個数をn, んで表せ 写真 (2) M内の格子点の総数をnで表せ.

回答募集中 回答数: 0
数学 高校生

解答解説を作ってこいという課題を出されたのですが、全く分からず作ることができません😿 答えだけでなく解説も加えてお願いしたいです。 全問という大変なお願いをしてしまいすみません🙇🏻‍♀️

宿題数列{a} は +1=4+2 (n=1, 2, 3, ...) +a2+as=-42 第5問2枚目のマークシートの右側に解答すること あるクラスで次の宿題が出された太郎さんと花子さんがこの宿題について話している。 数列{6m} は を満たすものとする。また, 数列 (42)の初項から第n項までの和をS (n=1, 2, 3, ...) とする。 az*aitg. Q2 a2=Qit2. as=az+2. b1=1 bm+1=b+S (n=1,2,3,...) を満たすものとする。 (1) 数列 {4} の一般項と S を求めよ。 A-1 (2) T=2S(n=1,2,3, ...) とおく。 T, を求めよ。 " afidized (3)数列{bm) の一般項をもとめよ。また,-1)(n=2, 3, 4, …) を求めよ。 (4)6m (n=1,2, 3, ...) が最小となるような自然数の値を求めよ。 42-42 30146:42. 2の等差数列とわかるね。 イイとわかるね。だから, an= エ 22- オカ 太郎:まず(1) について考えよう。 ① から, 数列{m} は公差が 花子:そうだね。さらにa1+a2+αs=-42から,初項 α」が 数列 {4} の一般項は だね。 a₁ = -42-093 Qus 太郎: じゃあ, 等差数列の和の公式から Sm=n2 キク am=唄-平項 46- 701-48 a₁ = -16 だね。 (2) はどうやって解くのかな。 1 花子: 1 k=1 n(n+1)2n+1)とk=1 ケb n(n+1)の公式が使えるよ。 A=1 2 太郎: そうすると, T 1 = (n+1)シスだね。次は,(3)だ。 サ このとき

回答募集中 回答数: 0
数学 高校生

29番の(1)で必要十分条件を求める問題で、どちらが必要条件でどちらが十分条件か分からなくなってしまいました。考え方を教えて頂きたいです。

28 よって ここで ゆえに −(n=k+1}{n+k+1)+(n−k)(n+k) n→∞0 =-2k²+(2n²+2n+1) f(n)=-4 f(x)=x(2k² +2n² +2n+1) k²=0+22k², 1=2n+1 TA³5 k=1 −42 k²+(2n²+2n+1) (2n+1) k=1 − n(n+1)(2n+1)+(2n²+2n+1)(2n+1) lim 72-00 n³ (2) f(n) -1/(1+1/2)(2+1/2)+(2+1/2)(2+1)} =--²--1-2+2-2= 8 3 3 別解n≦x≦k, k≦x≦n と k<x<kに分けて,直線 y軸に平行な直線につ x=i (-n≦i≦n) 上にある格子点の数を求める。 さて格子点を数える。 = -n≦i≦k のとき, 格子点の数は k=-n 1+3++{2(n−k+1)−1}=(n−k+1)² = (+_____________ k<i<kのとき, 直線 x = i の本数は ←-k+1≦isk-1 各直線上の格子点の数は よって k-1-(−k+1)+1=2k-1 = I=gb S=b 2(n-k+1)-1=2n-2k+1 Nk=2(n-k+1)+(2n-2k+1)(2k-1) =-2k²+(2n²+2n+1) 総合を複素数とする。 自然数nに対し、2” の実部と虚部をそれぞれxとyとして、2つの数列 29 {Xn},{yn}を考える。 つまり, z=xn+iy" (iは虚数単位) を満たしている。 (1) 複素数zが正の実数と実数0を用いて z=r (cos0+isine) の形で与えられたとき、 数列{x},{ym} がともに0に収束するための必要十分条件を求めよ。 1+√3 10 = n(n+1)(2n+1) のとき、無限級数Σx とΣy はともに収束し, それぞれの和は n=1 71=1 x=2y=イロである。 (1) z=r (cos0+isin0) [r>0] のとき HINT (1) x²+y² = (r")2 となることに注目し, まず必要条件を求める。 (2) z を等比数列の和の公式を利用した式で表してみる。 ORAN z"=r" (cosnotisinn()=r"cosn0 +ir” sinne Xn=r" cosnd, yn=r"sinno よって ゆえに x2+yn²=(r")' (cos2nd+sin'nb)=(x2)" limxn=limyn=0のとき lim(x²+ym²)=0 〔類 慶応大] 本冊 例題 13,102 ←ド・モアブルの定理。 ←=xn+iy 0sr²<1 よって に0<r<1のとき 1-400 0<r<1より, lim|rl"=0であるから ゆえに 0≦|x|=||"|cos nolsrp. よって 0≦ly|=|||sinner| また 以上から、求める必要十分条件は +③iのとき 10 lim|x|=lim|y|= 0 71-00 ゆえに 1110 Z ここで1-2 lim xnn-000 ZR= ここで k=1 z(1-2)= 1-² よって 1- 1+√3 i 10 1+√3 i 10 k=1 84 3+5√3 i 42 (1+√3i)(9+√3 i) (9-√3i)(9+√3 i) 6+10√3i_3+5√3i 2x= k=1 1-2 (1-(xn+iyn)) 1+√3 i 9-√3i 11-0 0721 0<r<1 n=1] -(1-Xn-iyn) 2R= = 1/2 (3(1-xn) +5√3 yn+(5√/3 (1–xn)—3yn}i) z*= (xn+iyn)= xx+iZyn k=1 3(1-x₂)+5√√3 yn 42 ΣXn² n=1 42 5√3 (1-xn)-3yn 42 0</1/3 <1であるから, (1) の結果より limxn=limyn = 0 „=lim 11-00 2 k=1 2 = = = = ( 1²/2 + √²³_i) = = = (cos / 1 + isin) Σyn=lim- 11-0 ←Sa<1のとき a²19 a=1のとき、 α>1のとき、18 42 ←xel Saxolxel から、 xel 0のとき 初項z. 公比zの等比 数列の初項から第 環 までの和 12-00 3 (1-x)+5√3ym_3_71 42 5√3 (1-xn)-3yn_15√/3 42 -419 ←分母の実数化。 42 14 ← 22 のもう1つの表現。 ←実部、虚部をそれぞれ 比較。 (12) 結果を利用 総合 N=1 £ =lim ży

回答募集中 回答数: 0
数学 高校生

青チャート数Ⅱ、EX101です。どれも解答を読めば理解はできるのですが、公式をどのように選べば良いかわかりません。 (1)は2倍角、3倍角公式で解こうとして、 (2)はcosθで括ってから合成をしようとして、 (3)は√2(sinx + cosx) を合成しようとして、 ... 続きを読む

50 スマー の例題 入の方 [解] の2 青チ チ 八重お種学問 ■日 A 選び あり 考 例 間 え・ ど [ デ 270 I EXERCISES 100nを自然数を実数とするとき, 次の問いに答えよ。 (1) cos(n+2)0-2cos@cos (n+1)0+cosn0-0 を示せ。 (2) cos0xとおくとき, cos50 をxの式で表せ。 (3) cos' の値を求めよ。 26 三角関数の和と積の公式. 101 (1) sinx+sin 2x+sin 3x cosx+cos2x+cos3x 人(②2) 050<1とする。 不等式0<< sinocoso+cos²0 < 1 を解け。 (3) 05x<2のとき、方程式 sinxcosx+√2 (sinx + cos.x)=2 (3) 弘前大) 12/12 とするとき、次の問いに答えよ。 27 三角 (1) tan0x とするとき, sin20, cos20 をxで表せ。 (2) xがすべての実数値をとるとき, p= 7+6x-xl 1+x ア (1) の結果を用いて, P を sin20, cos20 で表せ。 (イ))の結果を用いて, Pの最大値とそのときのxの値を求めよ。 IN とする。 a 103 の方程式 sinx+2cosxk (0sxm) が異なる2個の解をもつとき の値の範囲を求めよ。 [愛知] G ②104 関数f(0)=acos0+(a-b)sinocos0+bsin²0 の最大値が3+√7, 3-√7 となるように,定数a, bの値を定めよ。 CORMAS 102 (1) cos'01 105 平面上の点Oを中心とし、 半径1の円周上に相異なる3点 , B, C △ABCの内接円の半径は1/3以下であることを示せ。 京都 104 105 100 (1) 左辺の2cos@cos(n+1)0. 積和の公式を利用して変形。 (3) 6 7 x として (2) の結果を利用。 101 (1) 三角関数の合成と、和積の公式を用いて、 積=0の形に変形。 (2) sin@coscou'eは2次の次式であるから、20の三角関数で表され (3) sin.x+cos.x=tとおく。 の値の範囲に注意。 1+tan 1+² (2) (1) 結果 ① を利用。 103 三角関数の合成を利用。 f(x)=sinx+2c0sx として, y=f(x)のグラフと なる2つの共有点をもつ条件を考える。 )の右辺は、2次の同次式であるから、20の三角関数で表すことができる。 AABCの内心を1とすると ICsin IDC において、正霊定理から得られる等式を利用して、 rを 1 174 数学Ⅱ よって x0であるから ゆえに ここで, 0 すなわち (16x20x²+5)=0 EX €101 これを満たすxの値は 16x20x²+5=0 10± √10-16.55+√5 よって 求める値は 10 t < cos<cos' <cos³0 16 ゆえに (1) 0のとき、次の方程式を解け。 (1) P (左辺) (右辺) 5+√5 8 8 よって sinx+sin 2r+sin3x-cosx+cos 2x+cos3x (2) とする。 不等式√ sincom0+cos0を解け。 (3). DEx 240LB, IlliCsinxcor+/Z(sinx+cox)= ¢H = (sinx-cos.x)+ (sin2x-cos2x)+ (sin3x-cos 3.x) -√2 (sin(x-7)+sin(2x-7)+sin(3x-7)} ここで,sin(x)+sin(3x-4) 2sin (2x-4) cons.x であるから P=√2 (2 cosx+1)sin(2x-4) したがって、方程式は (2 cos x+1)sin(2x-)-0 cosx/12/2… ① または sin (2x-4) -0... ② xの範囲で、①を解くと x 12/23 また、xから この範囲で②を解くと 2x-4-0, z x すなわち x 12/23 したがって、求める幅は4001/12/12/10 (2)√3 sin cos0+cos²0= √3 + 1/cos 20 + 1/2 -sin20+ =sin(20+)+1/2 とみる。 $2√3 3+√5 5-√3 ←同じ を合成。 ←8- in/+ -2 si 1 +2=0+ b 0<sin(20+)+<1 - <sin (20+4)</ すなわち 20 とおくと、00のと この <sint</1/2を解くと 1/12 くたく/7/2 ゆえに 1/20/8/1/2 すなわち書くの (3) sinx + cosxとおき、両辺を2乗すると fsin'x+2sinxcosx+cos³x よって 不等式は よって sinxcosx ゆえに、方程式は221-2-0 21+4√21-5-0 (√21-1)(√21+5) - 0 整理すると ゆえに したが ここで 1-√2 sin(x+4) よりであるから -√2 515√2 よって、①のうちするものは 15212 √2 sin(x+4)= sin(x+4)= ②から よって1/12 17/12/0 EX 102 とするとき、次の問いに答えよ。 (1) tunxとするとき, sin2020 で表せ。 (2) xがすべての実数値をとるとき、とする。 いて、 Psin2/cos20 で表せ。 (1) cos201 イの結果を用いて、 の最大値とそのときのxの値を求めよ。 であるから 1+tan0 1+x² sin20-2sin0 cos 02 (tan cos 0)cos0 2x 1+x1+x² =2tan/cos²0=2x. cos 20=2 cos³0-1-21 1-x² -1=1+x² ● 数学 175 おき換え が変わることに注意 ix, cox MBR f-stax +con おき換えを利用。 の公式で解くと MITWE ←EABROOK 変数のおき換え が変わることに注意 MCMAS ←相互開催 ←i sind -tan feos 4章 EX

回答募集中 回答数: 0
1/9