数学
高校生
310番のカッコ1の問題の解き方を教えてください よろしくお願いします
> 309 次の値を
(1) sin 75° cos 15°
(4) sin 75°-sin 15°
例題 29 次の値を求めよ。
(5)
(2) cos 10'+cos 110.
指針 (1) 積和の公式を繰り返し利用する。 (2) 和→横の公式を
(1) 5--1(cos 60"-cos 20") sin 80
--sin 80++sin 80' cos 20
(1) sin 20° sin 40° sin 80°
--sin 80+(sin 100+ sin 60¹)
sin 80+ sin (180-80) + f. G
4.4
sin 80
sin 80+ sin 80
310 次の値を求めよ。
URE
(2) st=cos 10+(cos 110'+cos 130)=cos 10+2cm
=cos 10-cos 10-0 W
NI) cos 20 cos 40° cos 80°
(2) sin 20
75°+15°
2
= 2cos 45° sin 30° = 2.
= 2cos-
sin
(5) cos 15° +cos 105°
= 2cos
15° + 105°
2
75°-15°
2
COS
2
- ²1/1/2=-=√1/212
15°-105°
2
1
1
2 √2
=2cos 60°cos(-45°)=2--
(6) cos 105° -cos 15°
= -2sin 105°+15° in 105° -15°
2
2
= -2sin 60° sin 45º = -2.
√3
2
310 (1) cos 20° cos 40° cos 80°
(2) sin 20° +sin 140° + sin 260°
= (sin 20° +sin 260°)+sin 140⁰
=2sin 140° cos 120° + sin 140°
.
||
√√2
[1/1/
2
(cos60° +cos 20°)cos 80°
=cos 80° + cos20° cos 80°
= cos 80° +(cos 100+ cos 60°)
cos 80° +cos(180°-80°) +
= cos 80°-cos 80° += 1
√6
2
・から
したがって、解は
[別解
4' 2'
cos3x = -3cosx+4cos
4cos³x-2cosx=0
よって
ゆえに
COS
3
DA
また COSX
f
2cos (2cos²x2x+-
すなわち
よって
または COSx=
したがって Cos.x=0から
したがって
11
cos x = 0 または2x+-
「わち
²のとき
2x+
Z
313 cosr+ cos3x + cos5r (\-
cosx +2cos-
cos(2x-
K/MK/MK/MK/3
T
T
-1≤
x<1であるから cod
12 11
||
2x+= 2π
よって、①から2c064s+
=T
がって
x=2で最
から in 24 + sin
C=T-(F
sin 2C = sin
= sir
= sin
T
=1
て 左辺
==
3x+5x
2
COSx+2c0s4=2sin(
=2sin (2
cosx2cos4r+} =4sin,
等式
=2sin (_
.) √(√2
回答
まだ回答がありません。
疑問は解決しましたか?
この質問を見ている人は
こちらの質問も見ています😉