学年

教科

質問の種類

数学 高校生

青マーカーの部分がどうやって求められるのか分かりません。教えていただきたいです! よろしくお願いします🙇🙇

1辺の長さがαの立方体 ABCDEFGH において, 45 空間のベクトルの内積 次の内積を求めよ。 (1) CAB-AC (3) AH・EB求め 内 (4) EC・EG (2) BD BG D ☆☆☆ B C E--- [H] OA F G 図で考える 例題11の内容を空間に拡張した問題である。 [内積の定義〕 平面と同様 ab=abcos 0 Action 2つ BAC とのなす角 « ReAction 内積は,ベクトルの大きさと始点をそろえてなす角を調べよ 例題1 (3) 始点がそろっていないことに注意。 |AB| = α, |AC| =√2a, 空間におけるベクトル A △ABC は A D ∠BAC = 45° であるから B C ∠B = 90° の直角二等 AB· AC = a × √ 2 a × cos45° E 辺三角形 HA 8=SXF B C G (2)|BD| = |BG| = √2a, A D △BGD は D B <DBG=60° であるから B C 正三角形 Ser (3) AH = = a² -a² BD.BG=√2ax√2a× cos60° = |EB| = √2a, AHとEB のなす角は120°であるから AH・EB=√2a×√√2axcos120° == (4)|EG| = √2a, |EC| = √EG2+GC2=√3a ACEG において COSCEG = √√2a√6 √3a 3 EC.EG=√3a×√/2axcos∠CEG=242 E F G A D EBHCであり, B IC △AHCは正三角形より ∠AHC=60° E よって、AHとEB のなす F G 角は120°である。 A D C B [E 用する。 G △CEG で ∠EGC =90° A.より,三平方の定理を利 △CEGは直角三角形であ るから EG cos∠CEG= EC

回答募集中 回答数: 0
数学 高校生

なぜPF:PF'=FQ:F'Qだと、点Pにおける接戦が角FPF'の外角を2等分するということが分かるのですか? 回答よろしくお願いします。

練習 Step Up 末広 C2-136 (414) 第6章 式と曲線 D 15 (i) k> のとき =(a²-√a²-b²x): (a²+√ a²-b²+x1) 第6章 式と曲線 Check! 練習 (415) C2-137 Step Up 米問題 ①と②の共有点はない。 よって、(i)(面)より。 共有点の個数は, √15 k<- のとき, 2個 2 15 k=-- のとき. 1個 2 15 k>-- のとき, 個 2 C2.65 =1 (1) (460)焦点をF.F' とする.楕円上の点P (x,y)におけ する。 ある接線は FPF' の外角を2等分することを証明せよ. ただし, 0<x<a, yi>0 と xx yy 楕円上の点P(x1,y) における接線の方程式は, ......① a² b² =1 y=0 とおくと, x0より。 a² x= x₁ つまり、接線とx軸との交点をQ とすると,0 (2) 双曲線 61 (a>060) の焦点をF,F' とする. 双曲線上の点P (x1,y) における接線はFPF' を2等分することを証明せよ。ただし、とす る. (1) 焦点をF(60) F' (630) とする. 点(x,y)は楕円上の点より、 a²b つまり、 よって. PF'= (va'-b-x)'+yi =(√a²-b²-x1)²+ b²x² a 351-1 0<x<aよりacoであるから, となり, a² FQ: x1 √a²-b². F'Q=a+√a²-b² FQ: F'Q=(a√a²-6 x X1 =(a²-√a²-6x₁); (a²+√√a²-b³·x1) ② ① ② より PF:PF'=FQF'Q が成立する. したがって, 0<x<ay>0 のとき 楕円上の点 P(x1,y) における接線は, <FPF' の外角を2等分する (2)焦点をF(v'+b20) F^(-√'+120) とする. 点P(x1, y) は双曲線上の点より. つまり. よって, (5) +24 人 b2 PF'=(va'+62-x+y^ =(va'+b^-x^2+ b = 10-2+bx+a^ b2\x x²-2√3+62x1+α -07101 A2017 160 6 a √√√a-b PF= a ここで, 0<x<a で あり 34 ary <1 P(x, y) a Ka>b>0より. √a²-b 幻 <a で a あるから, √a-62 PF=α- F(VG-6,0) a F(√a-b²,0) また, PF +PF'=2a であるから, PF'=2a-PF=a+ √a²-b² -x1 a よって, a PF: PF'-(6-10-82.): (a + √4-82.) √a²-b² a D PF= a √√a+b x-a a √√a²+b² a x-a ここで,x>a>0で a a あり、 √√a²+b² ->1であ a P(x, y) るから, PF=YQ'+6? F^(-vo +6.0) QF(vo+6.0) a また,x>a より PF'-PF=2a であるか ら PF'=PF +2a= よって a+b -x+a a 80 <a>0b>0より a a 6 B1 B2 [C C2

解決済み 回答数: 1
数学 高校生

なぜ図1のような図が出てきたのかわからないです。半径1の球が三角形の円周上を回るのに半球の図が出てきたのが何故なのか教えて頂きたいです。

問題を 空間内に1辺の長さが4の正三角形があり,半径1の球の中心が この三角形の周上を一周するとき,この球が通過する部分の体積を求 動かす」とい めよ. [横浜国立大〕 《解答》 正三角形を含む平面に垂直で,この平面が x = 0 となるよう にx軸を定める. 平面 x = t (−1 ≦t≦1) による球の切り口は、半径 √1-12 (=r)の円である(図1).題意の立体 D のxによる切り口 D は、半径rの円の中心が平面x=t内で一辺の長さが4の正三角形の辺上を 一周する (図2) ときの円の通過領域に等しい (図3). これを扇形3個,長方 形3個、正三角形から内側の正三角形を除いた部分に分割する ここで1辺 の長さが4の正三角形の内接円の半径R は, 面積に注目すると 1.42 sin 60° = 2 2 11.R.(4+4+4) :: R = 2√3 3 2 の正三角形との相似比は (R-r): Rであり,面積は(R-F) 3 倍になる。 よって、図4の斜線部の面積は 図4の内側の正三角形の内接円の半径は R-rになるので, 1辺の長さが4 • 1 .42 sin 60° {1 - (R=r)²)} = 12r - 3√31 12r-3√3r2 2 だから、切り口 D の面積は r2m +4.r×3 +12r - 3√3r2 = 24+ (π-3√3) 2 = 24√1-12 + (π-3√3)(1-12) したがって、求める体積は dt 2/" (24√1-12 + (x-3√3×1-1³) 41 = = 48.77 +2(−3√3). 1/1 4 407-4√3 〔第1項の積分は半径1の四分円の面積

未解決 回答数: 1
1/1000