学年

教科

質問の種類

数学 高校生

赤い線を引いたところが,なぜなのか分かりません💦

コメント 結果的にいえば、2つの円の方程式を の方 x2+y^-5=0……①,r'+y^-6x+2y+5=0 とするとき2円の交点を通る直線は ①②であっさり求められるわけです. 最初聞いたときは, 「えっ、なんで?」と思ったものですが,すでに説明した ように,「①,②」と「①-②②」の同値関係を考えることで説明できるわ けですね. すが 奈良 この「同値」の考え方の威力を感じていただくために,次のような問題を絡 介しておきましょう. 例題 平面上に3つの円があり,どの2つの円も異なる2点で交わっているも のとする.各2円の異なる2つの交点を結ぶ3つの直線は1点で交わるこ とを示せ. 設定がとても一般的ですので,解こうにも何から手を つけてよいのかわからないような問題ですね.ところが, 図形と方程式の考え方を用いれば,ほとんど計算をする ことなく証明できてしまうのです. まず,3つの円を一般形 (x'+y' + lxc+my+n=0の 形)で表した方程式を ① ② ③とします.すると,①と②の2つの交点を通 る直線は 「①-②」, ②と③の2つの交点を通る直線は 「②③」, ①と③の2 つの交点を通る直線は 「①③」 と表せます. (2x 2-3 この +2①-2 (1)(2 これは、 (3) 一致する ②③ ①+ 1-3 けば ③ ことな る ここで 件は、 が成り立つことです ①③=(①-②)+(②-31- 0 (S) なのですから, 「①-② ②③」 と 「①③ ② ③」は同値です。 つまり、 それぞれの直線の交点は一致するわけですから,3直線は1点で交わります.

回答募集中 回答数: 0
数学 高校生

(2)についてです。なぜイコールがつくのかが分かりません。(マーカー部分)他の参考書の最大値を求める問題ではイコールをつけてないものもあるのですが何故なのでしょうか

(2) 98 第2章 関数と 応用問題 1 a は実数の定数とする. 2次関数f(x)=x'-4ax+3 について (1) f(x) の 0≦x≦2 における最小値を求めよ. (2)f(x)の≦x≦2 における最大値を求めよ. 精講 すので,軸と変域の位置関係に注意して 「場合分け」をする必 あります。 最小値と最大値で場合分けのポイントがどこになるのかを、 文字定数の値によって関係に注意してアコの類の位置が く観察してみましょう。 解答 f(x)=(x-2a)-4a2+3 より, y=f(x) のグラフの軸はx=2a である. 注意 (1) グラフの軸 x=2α が, 変域 0≦x≦2の 「左側」 にあるか 「中」にお か「右側」にあるかで,最小値をとる場所が変わる. 軸が変域の 「左側」にある 2a<0 すなわち a<0 のとき (i) 軸が変域の 「中」 にある ... 軸が変域の 「右側」にある 0≦2a≦2 すなわち 0≦a≦1のとき 2a>2 すなわち α>1のとき なので、この3つで場合分けをする. (i) α < 0 のとき x=0で最小値をとり 最小値は,f(0)=3 (i) 0≦a≦1のとき 文) x=2a で最小値をとり、最小値は, f (2a)=-4α²+3 () α>1のとき x=2で最小値をとり, 最小値は, f (2)=-8a+7 以上をまとめると 3 (a< 0 のとき) 求める最小値は, -4'+3 (0≦a≦1 のとき) (最小 [-8a+7 (a1 のとき) (ii)

未解決 回答数: 1
数学 高校生

(1)と(2)でN,Mのように置く文字を変えた方がいいのでしょうか?

332 第9章 整数の性質 練習問題 5 n, a, b を整数とする. (1) n+nは2の倍数であることを示せ. (2) 2は3の倍数でないことを示せ (3)2 +623の倍数ならば, a,bはともに3の倍数であることを示せ 精講 整数についての命題を証明するときに、剰余で分類することが有効 なときがあります。 (1)ではnを2で割った余り (つまり偶数と奇数) に,(2)ではnを3で割った余りに注目して場合分けしてみましょう。(3)は直接 証明することが難しいので、 「対偶」 (p259 参照) に注目してみましょう. 解答 (1) N=n+nとおく nを 「2で割った余り」で分類すると 2kまたは n=2k+1 である (kは整数). 次のように書 ますか (ア) n=2k のとき, N=(2k)2+2k=4k2+2k=2(2k2+k) 2k2k は整数なので,Nは2の倍数である. (イ) n=2k+1 のとき, N=(2k+1)+(2k+1)=4k²+6k+2=2(2k²+3k+1) 2k2+3k+1 は整数なので,Nは2の倍数である. (ア)(イ)より,すべての整数nでNは2の倍数であることが示せた. コメント 無数にある整数に対する命題が、たった数個の場合を調べるだけで証明で てしまえるというのが, 剰余で分類する手法の強力なところです. (2)M=n2-2 とおく. nを 「3で割った余り」で分類すると n=3k または n=3k+1 または n=3k+2 である(kは整数). (ア) n=3kのとき, より小さ うど M=(3k)2-2=9k²-2=3(3k-1)+1 3k2-1 は整数なので, Mは3で割って1余る数であると (イ) n=3k+1 のとき,

未解決 回答数: 1
1/72