数学
高校生

(1)と(2)でN,Mのように置く文字を変えた方がいいのでしょうか?

332 第9章 整数の性質 練習問題 5 n, a, b を整数とする. (1) n+nは2の倍数であることを示せ. (2) 2は3の倍数でないことを示せ (3)2 +623の倍数ならば, a,bはともに3の倍数であることを示せ 精講 整数についての命題を証明するときに、剰余で分類することが有効 なときがあります。 (1)ではnを2で割った余り (つまり偶数と奇数) に,(2)ではnを3で割った余りに注目して場合分けしてみましょう。(3)は直接 証明することが難しいので、 「対偶」 (p259 参照) に注目してみましょう. 解答 (1) N=n+nとおく nを 「2で割った余り」で分類すると 2kまたは n=2k+1 である (kは整数). 次のように書 ますか (ア) n=2k のとき, N=(2k)2+2k=4k2+2k=2(2k2+k) 2k2k は整数なので,Nは2の倍数である. (イ) n=2k+1 のとき, N=(2k+1)+(2k+1)=4k²+6k+2=2(2k²+3k+1) 2k2+3k+1 は整数なので,Nは2の倍数である. (ア)(イ)より,すべての整数nでNは2の倍数であることが示せた. コメント 無数にある整数に対する命題が、たった数個の場合を調べるだけで証明で てしまえるというのが, 剰余で分類する手法の強力なところです. (2)M=n2-2 とおく. nを 「3で割った余り」で分類すると n=3k または n=3k+1 または n=3k+2 である(kは整数). (ア) n=3kのとき, より小さ うど M=(3k)2-2=9k²-2=3(3k-1)+1 3k2-1 は整数なので, Mは3で割って1余る数であると (イ) n=3k+1 のとき,

回答

疑問は解決しましたか?

この質問を見ている人は
こちらの質問も見ています😉