学年

教科

質問の種類

物理 高校生

高校1年の物理基礎、加速度についての質問です。 写真下線部のところで、なぜ0.1で割るのか理解できません。加速度とは1秒間に速度がどれくらい増えるのかを表すものですよね? 図では0.040を0.4にすでに秒速に直しているため、1秒に0.16m増えるということになりませんか... 続きを読む

10 第1運動とエネルギー Let's Try! 例題 5 加速度 <-11 斜面に台車を置き, 静かに手をはなして台車を運動させ,このようす を1秒間に50打点打つ記録タイマーでテープに記録した。 台車 このテープの5打点ごとの長さを測定したところ, 右下図のようにな った。この数値を分析して, 台車の加速度の大きさを求めよ。 解説動画 A B D タイマー テーブ E 0.040m 0.056m 0.072m 0.088m 指針 5打点の時間は0.10秒である。 0.10 秒ご との平均の速さを, 各区間の中央の時刻にお ける瞬間の速さとみなしてその差をとると, 同じく 0.10 秒ごとの速さの変化が得られる。 解答 0.10 秒ごとの平均の速さを求め、その差 を0.10秒で割ると, 平均の加速度が得られ る(右表)。 0.10秒ごとの 移動距離 (m) 0.10 秒ごとの速 各区間の平均 平均の加速度 の速さ(m/s) さの変化(m/s) (m/s²) AB 0.040 0.40 0.16 1.6 BC 0.056 0.56 0.16 1.6 CD 0.072 20.72 0.16 1.6 99 DE 0.088 0.88 よって 1.6m/s2

回答募集中 回答数: 0
数学 高校生

数2 微分 なぜ答えのようになるのかわかりません。 Bはゼロに近づくから、0になるのではないのですか?教えてくださると嬉しいです🙇

324 基本例題 202 変化率 00000 (1)地上から真上に初速度 49m/s で投げ上げられた物体のt秒後の高さんは h=49t-4.9f(m) で与えられる。この運動について次のものを求め、 し, vm/sは秒速vm を意味する。 (ア) 1秒後から2秒後までの平均の速さ (2) (0)-3 めよ。 (イ)2秒後の瞬間の速さ とき,球の体積の5秒後における変化率を求めよ。 ふたた P.314 基本事項 指針 (1)高さんは時刻tの関数と考えることができる。 h=f(t)=49t-4.9t2 とする。 (ア) 平均の速さとは,平均変化率と同じこと。(んの変化量)÷(tの変化量)を断 算。 (イ) 2秒後の瞬間の速さを求めるには, 2秒後から2+6秒後までの平均の速さ 均変化率) を求め, 60のときの極限値を求めればよい。 つまり、微分係 f' (2) が t=2における瞬間の速さである。 (2) まず, 体積Vを時刻tの関数で表す。 これをV=f(t) とすると, 5秒後の変化率 は t=5 における微分係数 f' (5) である。 重要 例足 xの多項 る。 (1) f(x) (2) f(x 指針 ( ( 解答(1 (1) (ア) (49.2-4.9・22)(49・1-4.9・12) 2-1 =34.3(m/s) tがαから6まで変化す 解答 (イ) t秒後の瞬間の速さは,んの時刻 t に対する変化率 るときの関数f(t)の平 均変化率は f(b)-f(a) 7D dh b-a である。 んをt で微分すると =49-9.8t dh dt については、下の (1)=4 dt 求める瞬間の速さは, t=2として 49-9.8・2=29.4(m/s)=p 注意 参照。 '=49-9.8t と書いてもよいが、 (2) t秒後の球の半径は (10+t) cm である。 dt t秒後の球の体積を V cm とするとV=1(10+t V を tで微分して 求める変化率は,t=5として 4л(10+5)=900π (cm³/s) と書くと関数を 微分していることが式か ら伝わる。 =n(ax+b)"'(ax+b) 変数がx,y以外の文字で表されている場合にも, 導関数は今までと同様に取り扱う。例え (1+(1) 4 d=1/2x3(10+t) 2.1=4z (10+t) { (ax+b)"} ば、関数=f(t) の導関数はf(t), dh dt' dt df(1) などで表す。また,この導関数を求め ることを、変数を明示してん を tで微分するということがある。 練習 (1) 地上から真上に初速度 29.4m/s で投げ上げられた物体のt秒後の高さんは、 で与えられる。この運動に ④20

回答募集中 回答数: 0
数学 高校生

数2 微分 なぜ答えのようになるのかわかりません。 Bはゼロに近づくから、0になるのではないのですか?教えてくださると嬉しいです🙇

324 基本 例題 202 変化率 00000 (1)地上から真上に初速度 49m/s で投げ上げられた物体のt秒後の高さんは h=191-4.9P(m)で与えられる。この運動について次のものを求めよ し, vm/sは秒速vm を意味する。 (ア) 1秒後から2秒後までの平均の速さ (2) 10 cm (イ)2秒後の瞬間の速さ とき,球の体積の5秒後における変化率を求めよ。 ただ p. 314 基本 指針 (1)高さんは時刻tの関数と考えることができる。 h=f(t)=49t-4.9t2 とする。 (ア) 平均の速さとは,平均変化率と同じこと。 (んの変化量) (tの変化量) を計 算。 (イ)2秒後の瞬間の速さを求めるには 2秒後から2+6秒後までの平均の速さ 均変化率)を求め, 6 → 0 のときの極限値を求めればよい。 つまり、微分係数 f'(2) が t=2 における瞬間の速さである。 (2) まず, 体積Vを時刻tの関数で表す。 これをV=f(t) とすると, 5秒後の変化率 t=5 における微分係数 f' (5) である。 taから6まで変化す (1) (ア) (49.2-4.9.22)(49・1-4.9.12) 2-1 =34.3(m/s) 解答 (イ) t秒後の瞬間の速さはんの時刻 t に対する変化率 るときの関数f(t)の平 変化率は f(b)-fla dh b-a である。 hをtで微分すると =49-9.8t dh dt については,下の dt (1)-9 求める瞬間の速さは, t=2として 注意 参照。 '=49-9.8t 49-9.8・2=29.4(m/s)=p (2) t秒後の球の半径は (10+t) cm である。 と書いてもよいが, 3 t秒後の球の体積をVcm とするとV=1(10+t dV 4 V を tで微分して dt dv=7.3 ・3(10+t)2・1=4z(10+t) 求める変化率は,t=5として 4(10+5)=900(cm²/s) と書くと関数を 微分していることが式か ら伝わる。 { (ax+b)"}' =n(ax+b)"' (ax+b) 変数が x,y以外の文字で表されている場合にも, 導関数は今までと同様に取り扱う。例え dh d ば、関数=f(t) の導関数はf(t), dt' dt f(t) などで表す。また,この導関数を求め ることを,変数を明示してh を tで微分するということがある。

回答募集中 回答数: 0
物理 高校生

3,4,5の解き方を教えていただきたいです🙇‍♀️ あまり相対速度の考え方がよく分かってません💦 よろしくお願いします。

(2) 98 (1) 高速道路を自動車 A が時速 108 km で走行している。この速さは秒速何mに相当す X0 るか答えよ。 草 (2)自動車 A の運転手は危険を感じてブレーキをかけて停止した。ブレーキをかけてか ら停止するまでの間, 自動車 A は 6m/s2で減速したとする。 ブレーキをかけてから 停止するまでにかかった時間 (制動時間)とその間に自動車 A が走った距離 (制動距離) を求めよ。 次に,自動車 A のうしろを自動車 B が走行している場合を考える。 最初,自動車 A と自動車 Bはともに時速108kmで同じ直線上を走行していたとする。また,このと きの車間距離を27m とする。 次の問いに答えよ。 (3)自動車 A の運転手は危険を感じ、ブレーキをかけた。 (2) と同様に,ブレーキをか けている間は6m/s2で減速する。 自動車 B がブレーキをかけなかった場合, 自動車 Bは 自動車 A がプレーキをかけてから) 何秒後に自動車 A に追突するか。 Xx(4) 実際には,自動車 Bは自動車 A がブレーキをかけてから, 1秒後にブレーキをかけ た。このときの,自動車Aとの車間距離と,自動車 A の自動車Bに対する相対速度 を求めよ。 (5)自動車Bも 6m/s' で減速するとする。 自動車Bがブレーキをかけている間、 自動 車Aと自動車 B の車間距離が時間とともにどのように変化するか答えよ。

回答募集中 回答数: 0
生物 高校生

⑴,⑵,⑶全ての問題教えてください🙏🏻

図5は、オオカナダモの葉における細胞小器官が細胞内を移動する様子について、観察開始時(図5 左)と15秒後(図5右)の細胞を接眼ミクロメーターの目盛りとともに描いたものである。この観察に ついて以下の問について答えなさい。 観察開始時 観察開始 15秒後 160000000 300 図5 (1) A細胞小器官が細胞内を移動する様子についての観察を、 接眼ミクロメーターを用いて行った。 最初に、接眼ミクロメーターの1目盛りの長さを求めた。いま、接眼レンズ 10 倍、対物レンズ 20 倍の 組み合わせのとき、 接眼ミクロメーターの18目盛りが対物ミクロメーターの10目盛りと重なっていた。 このことから、 接眼ミクロメーターの目盛りが何μmに相当するかを答えよ。 ただし、 対物ミクロメータ ―は1mmを100等分した目盛りがついている。 割り切れない場合は、小数第2位を四捨五入した値 を答えよ。 (2) 観察開始時に矢印Aで示した細胞小器官はその後矢印Bの方向に動いた。15秒後の矢印 A の細胞小器官の位置に注目し、この細胞における細胞小器官が細胞内を移動する速度を秒速(μm /秒)で求めよ。 ただし、 観察に用いた顕微鏡の設定は接眼ミクロメーターを含めすべて(1) と同じとす る。 (3) (2)で求めた速度を (mm/時)で表し、 割り切れないときは、 小数第1位を四捨五入した値を答 えなさい。

回答募集中 回答数: 0
1/5