学年

教科

質問の種類

数学 高校生

例題72.2 f(0)の求め方はこれでもいいのでしょうか??

演習 例題 72 関数方程式の条件から導関数を求める 関数f(x) は微分可能で, f'(0) = a とする。 00000 (1) 任意の実数x, y に対して,等式f(x+y=f(x)+f(y) が成り立つとき, f(0), f'(x) を求めよ。 (2)任意の実数x,y に対して, 等式f(x+y=f(x)f(y), f(x)>0が成り立つ f(0) を求めよ。 また, f'(x) を α, f(x) で表せ。 演習 70 このようなタイプの問題では,等式に適当な数値や文字式を代入することがカギ となる。 f (0) を求めるには, x=0 や y = 0 の代入を考えてみる。 また,f'(x) は 定義 f'(x)=limf(x+h)-f(x) h→0 h に従って求める。 等式に y=h を代入して得られる式を利用して,f(x+h)-f(x)の部分を変形していく。 きを (5) (1) f(x+y=f(x)+f(y) ..... ① とする。 解答 ① に x=0 を代入すると f(y)=f(0)+f(y) f(0)=0 x=y=0を代入してもよい。 【アの両辺からf (y) を引く。 また, ① に y=h を代入するとf(x+h)=f(x)+f(h) f(x+h)=f(x)+f(h) から 12 ma ゆえに ゆえに f'(x)=lim f(x+h)−f(x) f(h) f(x+h)-f(x)=f(h) = =lim [大工製受] h→0 h h→0 h f(+h)-f() =lim f(x)+ho (2) f(x+y=f(x)f(y) f(0+h)-f(0) ②にx=y=0 を代入すると ② とする。 (*) lim -=f'(■) =f'(0)=a h→0 h h (*) f(0)=0 ...... f(0)=f(0)f(0) f(0) 2次方程式とみる。 よって f(0){f(0)-1}=0 (2 (0) f(0) > 0 であるから f(0)=1 また, ② に y=h を代入するとf(x+h)=f(x)f(h) 条件f(x)>0に注意。 大 (S) ゆえに BC [大 f'(x)=lim f(x+h)-f(x) h f(x){f(h)-1} =lim lim f(x)f(h)-f(x) h→0 h→0 h (E) h→0 (2) AB Ta f(0+h)-f(0) =f(x)・lim h h→0 dx f(0) = 1, f'(0)=α = f(x)• f'(0) =af (x) = < 8

未解決 回答数: 1
数学 高校生

(3)なんですが、横の補足のグラフがどうして-π/2とπ/2に黒丸なのかが分かりません。ガウスなら−1の所に黒丸じゃないんですか? ガウスが苦手です( ඉ-ඉ )

基本 次の関数 f(x)が, x=0 で連続であるか不連続であるかを調べよ。 ただし, [x] (ガウス記号) は実数xを超えない最大の整数を表す。 (3)f(x)=[cosx] (1) f(x)=x3 CHART & SOLUTION (2)f(x)=x2(x=0), f(0)=1 p.70 基本事項 6 関数の極限 f(x) がx=α で連続 ⇔ limf(x)=f(a) x→a f(x)がx=αで不連続⇔xa のときのf(x)の極限値がない または limf(x)=f(a) x1a limf(x), f (a) を別々に計算して一致するかどうかをみる。 x→a 解答 (1) limf(x)=0, f (0) = 0 から limf(x)=f(0) (1) f(x)A 中 2章 5 x→0 x→0 よって、関数 f(x) は x=0で連続である。 (2) limf(x)=0,f(0)=1 から f(x) A x→0 limf(x)=f(0) よって、 関数 f(x)はx=0で 不連続である。 -1 1 201 S+0-0[ (エ)左 0 1 x ←グラフでは, x=0でつ ながっているかどうか をみる。 (3)xx0 とすると 0<cosx<1 よって [cosx]=0 ゆえに また lim[cosx]=0 x→0 f(0)=[1]=1 よって lim f(x)+ƒ(0) (+)--( x-0 したがって, 関数f(x) は x=0で不連続である。 (3) x>-->>- #1 =(x) f(x)4 10x) (S) π 2 2 0 x f(x)とする。 ■RACTICE 43 次の関数 f(x) が,連続であるか不連続であるかを調べよ。 ただし, [x] は実数x を 超えない最大の整数を表す。 M

解決済み 回答数: 1
数学 高校生

数3の微分です。 答えと違うこの方法でもよろしいのでしょうか?

例題 56 連続と微分可能 ( **** 関数f(x)= sin 1 x 0 微分可能か . (x=0) (x=0) か は,x=0 で連続か. また, x=0 で 「考え方 連続も微分可能もそれぞれ定義に戻って考える. < 連続> 〈微分可能> KAP f(x) がx=a で連続 f(x) が x=aで微分可能 220 ⇔ limf(x)=f(a) x → a ⇔f'(a)=lim f(ath)-f(a) 70 k→ 0 h が存在する 解答 このとき「微分可能であれば連続」 であるが,「連続であっても、微分可能とは限らな 「い」ことに注意する. x=0で0sin ossin1/10より 0≦x°sin limx2=0 より x0 | ≤x² x 1, lim|x'sin |=0 x limf(x)=limxsin- したがって, x0 0fx -=0 x f(0)=0 より, limf(x)=f(0) となり, x 0 関数f(x) は x=0 で連続である. f(0+h)-f(0) 次に, lim h→0 h 1 h² sin 0 h =lim h→0 h limf(x)=f(0) であるか確 かめて, x=0 で連続かど うか調べる. x20 より 各辺にxを 掛けても,不等号の向きは 変わらない. 各辺をx→0として極限 をとり、はさみうちの原理 を利用する. x=0 で微分可能かどうか 調べる. YA |y=f(x) =limh sin- h→0 h 0≦|hsin/12/11hl.limh=0より①は、 limhsin12=0 h→0 h よって, f'(0) が存在するので, 関数f(x)はx=0で微分可能である. f'(0)=0 注〉x=αで連続であることとは別にx=αで微分可能であることを示す必要がある. 練習 x 56 ** f(x) * sin(x0) は, x=0 で連続か. また, x=0で微分可能か (x=0) →p.131

解決済み 回答数: 1
数学 高校生

(1)の答えで、 2枚目の写真の左の式を使っても大丈夫ですか?

3 定義、公式の証明- (1) 関数f(x)のx=αにおける微分係数の定義を述べよ。( (2) 関数f(x), g(x) が微分可能であるとする. 積の微分公式 {f(x)g(x)}=f'(x)g(x)+f(x)g'(x) を証明せよ. 宮崎大 (3) f(x)=x"(n=1, 2, 3, に対し,f'(x)=nzn-1であることを,数学的帰納法により IS (上智大理工) せ 定義をしっかり押さえておく 「連続」「微分可能」の定義をしっかり押さえておこう(p.34) 連続とはグラフがつながっている, 微分可能とはグラフがなめらか,というグラフのイメージをきち んと定式化したものである.なお,r=αで微分可能であれば, x=αで連続である.これは, f(ath)-f(a) lim{f(a+h)-f(a)}=lim ・h=f' (a) •0=0 ∴ limf(a+h)=f(a) h→0 h→0 h→0 と示すことができる. 逆は成り立たない (反例は,f(x)=|x-al). 公式を証明できるようにしておく 教科書に載っている公式を証明せよ,という意表をついた出題 もある。定義から微分の公式を証明させる問題が多いので,教科書で確認しておこう)() 解答する (9) + f(a+h)-f(a) (1) 極限値lim- h→0 x=αにおける微分係数といい、f'(α) と書く. が存在するとき,この値を関数f(x) の この極限値が存在するとき,関数 f(x)はx=αで微分可能である という. (2) f (x+h)g(x+h)-f(x)g(x) ①

解決済み 回答数: 1